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Abstract

One of the major drawbacks in current Smart Home solutions is, that they are not
smart. A casual use-case for a Smart Home is to provide simple remote access to every
sensor or actuator that is installed in the apartment, moving the switch for a light from
the wall, to the mobile phone or tablet. Although people can - in best cases - integrate
manually written expert rules to simulate complex management of the actuators, each
time a new sensor is added to the setup, new management is wanted or a new person
moves in, these rules need to be updated manually. This case gets more complicated
if the fact is considered, that people may have different preferences according to their
condition.

To ease the implementation and maintenance of such a Smart Home, and push research
of Ambient Intelligence into well defined problems, an approach of such a sensor-adaptive
and biomedical-sensitive Smart Home is proposed. The approach combines Association
Rule Mining with Classification in order to learn the actuator management in a Smart
Home, from the observed behavior of the inhabitants. Over time, the system learns
rules from the data that can be executed by the aforementioned Smart Home software
to control the installed actuators automatically.

Beside the theoretical concept, a prototype was implemented and evaluated against real
data from an experimental Smart Home setup.
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1 Introduction

1.1 Motivation

Since time immemorial people desire support in their daily life. When a train or flight is

canceled they would like to be informed instantly in order to find another route to their

destination. When they forget their wallet, they want to pay regardless of not having

it with them. When they leave their old relatives alone at home, they want someone to

look after them. People are needy in various situations during daily life. But the society

is getting more and more busy. People do not have much time to care for each other

while at the same time would like to have more support in their daily life. This gap

is widening with the evolution of globalization and industrialization and will eventually

cause a huge problem in society.

One way to solve this problem is to let computers support people’s daily life. Starting

with the gradual integration of computers into every object, a vision came into being

of an omnipresent artificial intelligence, that cares and proactive supports people in

their everyday life, being transparent to humans and adaptive to new situations. This

vision is named Ambient Intelligence (AmI). Although manifested just a few decades

ago, the development of AmI is already visible in society. People are supported by

digital assistants who remind them of appointments, help them search for information or

propose a restaurant they might like. They work in buildings with centralized and often

computerized environmental control, travel in cars or trains driven by computers and

can pay without cash or credit card. AmI provides many advantages in the environment

it is applied to, because it is designed to support people.

One environment that is continuously growing in popularity is the domestic environment.

A Smart Home (SH) enables remote control of any object that it is connected with,

automatic regulations of domestic parameters like temperature, light or locks and can

even optimize energy consumption of the whole household. Since people spend the most

time of the day at home, the interest in SHs has boomed in the past years. As a reaction

to the growing interest many manufacturers have developed solutions for SHs. This has

resulted in an continuously growing variety of - more or less compatible - devices and

platforms for domestic environmental management.

1



1 INTRODUCTION

1.2 Problem Statement

Although advantageous for many scenarios, the installation of such a SH requires knowl-

edge of the technology, the target areas and the way that AmI should support the daily

life of the inhabitants. An expert usually configures sensors (observers) and actuators

(regulators) in the SH after installation and rarely modifies it again. Nevertheless, tech-

nology and human evolve rapidly. If support in new areas of the domestic environment

is wanted, new sensors or actuators need to extend the current functionalities of the

SH, leading to - in best case - a configuration of the new devices or - in worst case -

a reconfiguration of the whole SH system. Even if the behavior of inhabitants change,

new people move in or something else changed in the domestic environment, an expert

needs to reconfigure the behavior of the SH.

The problem increases in complexity if the fact is considered that people prefer different

support according to their physical or mental condition. A sleepy person would not

want to listen to loud music or a very stressed one would not want to be informed about

everything at home. The (re-)configuration of the SH would not only require knowledge

about the technology, behavior of the inhabitants and target reaction of the SH but also

preferences under specific biomedical conditions from every inhabitant. An expert may

be able to (re-)configure the sensors and actuators but the only ones knowing the target

supportive behavior of the SH with respect to their own preferences are the inhabitants,

leading to the situation that they need to (re-)configure the behavior of the SH by

themselves.

However, there is not much benefit left if people trade time required to adapt the behav-

ior of the SH every time something changes in the domestic environment, for support

in their everyday life. To apply AmI in the domestic environment a SH is required that

can adapt its behavior to new sensors or actuators, that learns it from the inhabitants,

how to react on it and what they prefer under specific conditions.

But how could such a sensor-adaptive and biomedical-sensitive SH look like?

1.3 Solution Approach

Instead of developing a new SH, current open source solutions will be extended with the

objected functionalities. In many open source SHs - like openHAB - the management

2



1 INTRODUCTION

of sensors and actuators - and thus the behavior of the SH system - is realized by a

rule-based system. Rules are popular for complex behavior emulation because they can

be read by humans and machines and - usually - do not require great knowledge of a

programming language. Therefore a mechanism to adapt the behavior of the SH already

exist by adapting the rules of its rule-based system.

In order to learn the behavior of an inhabitant, the first challenge is to learn rules that

resemble this behavior. Rule Induction (RI), a scientific field of Machine Learning (ML)

that infer knowledge from data in form of rules, can be used to infer the behavior of

inhabitants by analyzing past sensor events in a SH. If an inhabitant uses an actuator,

sensors related to this process would also produce events. This characteristic can be used

by Association Rule Mining (ARM), a paradigm of RI, that aims to discover associations

between elements in data. If a new sensor is added to the SH and it is somehow related

to an actuator, ARM will discover - sooner or later - a relation between these devices.

But the behavior of the inhabitant is not purely based on events. For example, if an

inhabitant enters a room, the light is not always turned on or the heating is not regulated

every time. Therefore some context is required, that describes under what conditions the

respective actuator is controlled by the inhabitant. This context is given by the current

state of all sensors right before an actuator is activated. However, since a motion sensor

in the kitchen may have nothing to do with the light switch in the bedroom, the context

needs to be restricted to the related sensors that were discovered previously.

Since the context is a set of related sensor states, another RI paradigm - called Classification

(CL) - can be applied in order to discriminate between the relevant and irrelevant con-

text. The composition of both approaches generates a set of rules that resembles the

actuator management of the inhabitants, supporting their daily life by taking the man-

agement of the actuators. The exported rules are stored in a performance table at the

file system. The proposed learning system keeps track of the exported rules through the

table in order to adapt the rule base and avoid producing the same result again, leading

to the next challenge: adaptation of the knowledge.

Since a SH can be extended with different sensors and actuators over time, the learned

knowledge - represented in form of rules - needs to be adapted to the new setup. However

in order to adapt the rules, feedback is required that tells the SH which rules are obsolete.

Direct feedback can be given by a SH specific Human User Interface (HUI) - like a website

3



1 INTRODUCTION

- where the user can select wrong decisions done by the rules instantly. In addition the

performance of the exported rules is evaluated periodically by the learning system which

is triggered from the SH. Rules that fall below a specified performance threshold are

tagged for adaptation. Instead of optimizing rules and risk to be trapped in a local

optimum, the tagged rules will be removed and replaced by new learned ones. To avoid

generating the exact same rule again, the removed one will be excluded from this learning

process.

The last challenge is to make the SH sensitive for the physical and mental condition

of the inhabitant. Since the condition of a person consists of various measurable and

immeasurable features, only selected ones can be considered. Several studies proofed a

relation between stress and the Heart Rate Variability (HRV), that is calculated from

the inter-beats interval of the heartbeat. Many wearable devices like Smart Watches or

Fitness Bands provide capabilities in measuring this data.

The main advantage of RI is that it can be applied on any data. By adding biomedical

sensor devices as casual sensors to the SH, it is able to observe the behavior of the

inhabitant under stressed and relaxed conditions, depending on the data available. The

rule learning approach will differentiate the context and create rules for a stressed, and

a relaxed inhabitant, enriching the SH with biomedical-sensitivity. Further types of

biomedical data can be added the same way.

1.4 Major Results

Due to lack of time, the integration of biomedical sensors into the SH could not be real-

ized. Therefore no evaluation concerning the biomedical-sensitivity could be performed.

Regardless of this, the proposed system learns many different highly specialized rules

that could be generalized and hence reduced if clustering is applied to the input and

output feature space of the CL approach. However this is not entirely necessary if a

minimum dataset size threshold is applied and enough data is available. This leads

to the next major result that ARM scales poorly on bigger datasets. Correlated with

the dataset size, the number of discovered rules increased drastically resulting in the

requirement of more computational resources.

4



1 INTRODUCTION

On the other hand, the extension of association rules with descriptions learned from a

classifier is able to generate very powerful decision rules and that they - as a set - can

resemble the inhabitants behavior in controlling the SH actuators. In addition, by using

a specialized approach for segmentation of the main event stream, the proposed system

is surprisingly robust against varying sensor setups. In addition, due to its modular

structure, it can be applied - with only a few changes in the configuration - on any SH.

Last but not least, the rules that were learned achieved very good results at the evalua-

tion data, but most of them made semantically little sense. This happened because the

data - collected during an experiment - represented just a peak of the real feature space.

Therefore the exported rules should still be supervised by an expert or the inhabitant

before they are integrated into the SH.

1.5 Structure of the Thesis

The document is structured into seven sections. After this introduction, the current

state of the art in AmI is addressed in Section 2 opening with the definition of AmI and

elaborating several approaches for Activity Recognition (AR) and Behavior Prediction

(BP) in general and after their reusability for the problem statement. After that, some

context-based background knowledge on SHs, rule-based systems, RI and the HRV is

provided in Section 3. Following the flow, Section 4 revisits the learning problem in

more detail, followed by a description of the proposed method for rule learning and

adaptation. In Section 5 the implementation of the approach is presented in addition

to the tools and libraries that were used. Subsequent to this, the proposed system is

evaluated in Section 6 starting with a description of the experimental SH setup which is

followed by an inter-algorithm evaluation in order to determine a reliable configuration

under which the system learned the rules, before discussing the performance evaluation

with respect the accuracy and convergence. Finally, this thesis concludes with Section 7

at which the problem is revisited first before the proposed system and respective results

are summarized and future work is presented.
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2 State of the Art

In this section, the current state of the art in AmI (2.1) and ML (2.2) is elaborated.

However, since AmI is integrated in various fields of research, the focus is laying on the

context of Home Automation. In addition, the concept of the elaborated approaches for

AR and BP from Section 2.1.3 are evaluated from a ML perspective to not only differ-

entiate the state of the art from the proposed concept, but to also highlight advantages

of the respective approach and avoid similar drawbacks.

2.1 Ambient Intelligence - An Overview

To convey the fundamental notion of AmI, its definition and vision are elaborated in

Section 2.1.1. Followed by this, several projects of various application areas for AmI

are introduced in Section 2.1.2. Finally in Section 2.1.3, multiple approaches of AR and

BP for the relevant area of application - the Smart Home - are presented and evaluated

after their reusability.

2.1.1 The Vision of Ambient Intelligence

The term Ambient Intelligence refers to many slightly different definitions, depending on

the context it is elaborated for and the author’s scientific background. Simon Elias Bibri

[41, pages 33-34] points out several definitions which were published after the reports

concerning AmI from the IST Advisory Group (ISTAG) in 2001 [49] and 2003 [56].

These definitions share common characteristics like sensitivity, responsiveness, adap-

tivity, transparency, ubiquitousness and intelligence that an AmI system should have,

which was also confirmed by Cook et al. in [45].

Rather than creating a new definition of AmI, the description of the ISTAG from 2001

will be used that defined AmI as

a vision of the Information Society where the emphasis is on greater user-friendliness,

more efficient services support, user-empowerment, and support for human inter-

actions. People are surrounded by intelligent intuitive interfaces that are embedded
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in all kinds of objects and an environment that is capable of recognizing and re-

sponding to the presence of different individuals in a seamless, unobtrusive and

often invisible way [49][P. 1].

This vision describes a supportive, responsive, adaptive, user-centered and transparent

environment in which the society interacts with computers that are woven ‘into the

fabric of everyday life’ like Mark Weiser described in [35]. However, Weiser did not

describe AmI in 1991 but Ubiquitous Computing, which is a vision of the omnipresent

computer, embedded invisibly into every object, connected to each other and intuitively

usable by people. Therefore it is not surprising that AmI is often used synonymously for

Ubiquitous Computing. Rather than equation, the notion of AmI builds upon it with a

focus on human-centering, responding, adapting and intelligent supporting approaches

in the daily routine [45] of people.

As a consequence of the aforementioned characteristics, AmI also interacts with tech-

nologies and artificial intelligence. In order to observe both, the environment and the

people in it, sensors are used that are able to capture features of the environment. Arti-

ficial intelligence is used to analyze the observed situation and actuators are controlled

to response like an intelligent entity [73]. To analyze such situations, not only abilities to

identify and recognize entities in the environment - like a person or a bed - but also the

determination of their current or future state - like an activity the person is currently

doing or going to do - are required. The analysis of context, well elaborated by Brooks

in [6], is an ongoing state of the art challenge in AmI and elaborated further in the

following sections.

2.1.2 Areas of Application for Ambient Intelligence

Due to the technical evolution, AmI encompasses not only many fields of research but

also many areas of application. In this section several representative projects in different

areas of application are introduced in order to obtain the current status of AmI in the

society.

Corchado et al. developed in 2007 an autonomous deliberative case based planner agent

designed to plan the nurses’ working time dynamically, to maintain the standard working

reports about the nurses’ activities, and to guarantee that the patients assigned to the
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nurses are given the right care [12, p. 1], called Autonomous aGent for monitoring

ALZheimer patients (AGALZ). AGALZ is part of the Alzheimer Multi-Agent System

(ALZ-MAS) [11, p. 382] by providing agents for planning and tracking of the patients.

To guarantee their safety and optimize the working plan of the nurses, they are tracked

by passive RFID microchips mounted on bracelets and worn on the wrist or ankle, and

active RFID sensors that are installed at protected zones with an adjustable capture

range of two meters.

Another agent based system - called the Independence LifeStyle Assistant (I.L.S.A) - was

developed by Haigh et al. as a field study from 2001 to 2004 [20, 21]. Similar to AGALZ,

I.L.S.A was a monitoring and supporting system to help elderly people maintain their

independent daily routine and reducing the burden of caregivers. However compared to

AGALZ, I.L.S.A was installed in the homes of four system engineers and eleven elderly

people. Each home had four to seven sensors, including one medication caddy and

several motion detectors.

Beside applications for health care, Augello et al. developed in 2006 a pervasive user-

friendly information guide for the Museo Archeologico Regionale of Agrigento [3]. Using

the Artificial Linguistic Internet Computer Entity (A.L.I.C.E) - an agent-based chatbot

- as backbone, the system provides natural language communication between visitors

and the information guide by transforming input speech to text, passing the text to the

chatbot and transforming the textual answer to speech. Beside natural language, the

conversion of the museum tour is also triggered by active RFID tags placed on PDAs

and passive RFID tags near the museums attractions.

Another AmI system in the tourism application area is DALICA developed by Costantini

et al. in 2007 for the Villa Adriana near Tivoli[13]. DALICA is a multi agent system

where the agents - developed in the programming language DALI - proactive learn or

enhance user profiles. They assist the visitors during their tour, educe their habits and

preferences and propose cultural assets to them with respect to the learned profiles.

Unlike the previous system, DALICA does not rely on RFID devices but traces visitors

through the Galileo satellite and a receiver that is embedded in their PDAs.

Aside from health care and tourism, AmI also encompasses the area of work. In this

area, Marreiros et al. developed a multi-agent based decision support system for spatial

and temporal distributed discussion meetings [27]. The agents are used to analyze the
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emotions of the participants and imitate them to simulate the progress of the discussion.

Each participant has access to an agent based simulation tool for group decision that was

developed under the ArgEmotionsAgent project from 2005 to 2008 [70], which simulates

the predicted reactions of other participants.

Another example of AmI in work is Sparse, an intelligent alarm processor that helps

operators at power system control centers to rapidly interpret an enormous amount of

alarm messages during incidents. Sparse was developed by Vale et al. in 1997 [78]. Unlike

all projects described previously, Sparse follows a rule based approach with manually

written expert rules. The system is divided into two parts: a time-tag logging software

that sends all messages from up to two minutes ago if the beginning of an incident is

detected, and the rule engine that interprets these messages and supports the operators

with decision advice.

Finally in the relevant area of application for this work - the home automation area -

many AmI systems were realized in multiple projects. Abowd et al. elaborated aware-

ness of human activity in the Aware Home in 2002 [1]. The Aware Home is a homelike

furnished laboratory at the Georgia Institute of Technology. Awareness of human ac-

tivity is provided by detection of location and orientation, AR and AR. The location is

determined through active RFID tags on floor mats that are distributed throughout the

house and passive RFID tags that are below the knee of the inhabitants, e.g. in shoes

or trousers. In addition, an unobtrusive camera grid is installed on the first floor of the

laboratory, which is calibrated to the floor plan.

For research purposes in home automation, the PlaceLab was developed by the MIT

House_n Consortium in collaboration with TIAX LLC in 2004. The PlaceLab was

also an apartment-like furnished laboratory equipped with too many different sensors

to describe for this work. A brief introduction of the sensor setup can be found at [60].

The PlaceLab was conceptualized to be easy expandable with further sensors or different

sensor setups, depending on the current project requirements. The research agenda for

the PlaceLab encompassed approaches for a proactive support of healthy behavior, AR,

biometric monitoring and many more.

Although the projects described above were implemented successfully, each development

was specialized, objected mostly just evaluation purposes and documented poorly. In
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order to gather more information about AmI at home, further state of the art publi-

cations regarding the main challenges - AR and AR - are elaborated in the following

section.

2.1.3 Ambient Intelligence in Home Area: Smart Homes

To apply the aforementioned notion of AmI in the domestic area, sensors that are able

to capture the area and actuators through that it can interact with it, are required. The

application of AmI to this area provides several benefits like: an increased safety, more

comfort and an efficient economical management [40]. However, the grade of support in

this area - provided by AmI - depends strongly on the installed technology. A motion

sensor for example can only detect inhabitants if they are moving. A person sitting on

the couch and reading a book would not be noticed by it. Due to this it could confuse the

absence of motion with an absent inhabitant and turn the light off. To compensate such

constraints, the situation needs to be analyzed by the artificial intelligence thoroughly,

before the decision is applied. Therefore the success of AmI is not only related to

the available technologies, but also to the intelligence that provides the capabilities to

support the inhabitants during their daily life.

Considering Friedewald et al., the housing application field of AmI can be divided into

four functional categories: Home Automation, Communication / Socialization, Refresh-

ing / Entertainment and Working / Learning [50]. While the last three are definitely

important aspects of AmI in the domestic area, this work focuses on Home Automation

also called Smart Home. According to them, a SH encompasses the support of basic

housework, security and safety of the inhabitants to increase their autonomy and sup-

port their independent living. For these purposes, the SH needs to evaluate the current

situation of the home. This includes not only the states of every domestic feature that

may be influenced by unknown parameters, but mainly the objection to recognize the

current and subsequent activities of the inhabitants.

So far, researchers approached the last challenge by assigning several observed features

from an inhabitant during his casual lifestyle, to a predefined activity like walking,

sleeping or cooking. This process is referred to as Activity Recognition. Taking this

analysis one step further, scientists try to predict future activities of inhabitants based
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on probability theory that is applied to past sequences of activities, called Behavior

Prediction. In the following, several approaches for both tasks are elaborated.

Activity Recognition

Following Bourobou and Yoo in [43], the recognition of activities encompasses the chal-

lenge to identify activity patterns from heterogeneous data and classify them to their

respective activities. In this context, an activity pattern is defined as a common oc-

currence of data points from a sensor setup, that can be observed during the execution

of the respective activity. Over the last decades many different approaches in AR were

published. In this work, just a few distinct will be introduced to indicate the possibilities

of AR.

Chen et al. proposed in [44] an ontological approach for AR based on the International

Classification of Functioning, Disability and Health (ICF) standard of the World Health

Organization [32]. An activity model is constructed from data in four steps: Ontolog-

ical Activity Modeling, Activity Recognition, Unknown Activity Learning and Activity

Model Adaption. At first a hierarchical initial ontology model for activities is created.

Based on this model, a decision tree is generated using an ID3 similar algorithm to

classify activities. After that, the most specific concept describing the current activity

is retrieved. If the activity model does not contain a concept with the same specific

properties yet, the next superior concept is checked until one is found that matches

the target properties. In order to extend their ontology model, Chen et al. clustered

unknown sensor property sets (or unknown activities) into clusters with similar sensor

activations. To decide which of these unknown activities shall be learned next, they

used a frequency threshold. Followed by this, the ontology model is updated manually

or semi-automatically. In semi-automatic cases, the user is supported by a recommen-

dation algorithm, which could for example recommend a location for an activity. Last

but not least, the modified ontology model needs to be validated by an expert.

Bouchard et al. proposed in [42] a spatial-based AR approach. To determine an activity

using only the spatial features of objects, their spatial relations are discovered first by

determining the location of RFID tags - attached to each object - using the trilateration

measurement method. For each location, one of three possible regions (small , medium,

large) is calculated as circles around the center of the object. After that, a spatial

reasoning approach that was proposed by Egenhofer and Franzosa in 1991 [15], is applied

12



2 STATE OF THE ART

over the regions to determine one of eight different spatial relations. Based on the

discovered relations, they inferred activities by matchmaking the plausibility - derived

from a proportionality function - of spatiotemporal features with normalized plausibility

values.

Another approach - proposed by Yang and Cho in [79] - utilizes a fuzzy Bayesian Net-

work, that takes heterogeneous data from accelerometers and physiological sensors to

recognize activities. The network is trained using preprocessed data from every sensor

paired with a simultaneous annotated activity label from the user. Since continuous

data is generated by the physiological sensor, it needs to be segmented by a fuzzy mem-

bership function that is based on the mean and standard deviation of the distribution

for every sensory measurement. Using the preprocessed data and the labels, the fuzzy

Bayesian Network trains a conditional probability table that can be used for AR.

Behavior Prediction ...

Beside AR, another interesting area of research in SHs is BP. Related to activities, the

behavior of a person can be seen as a common sequence of actions that is executed by

the person in a specific context like a morning routine or a working plan [52]. BP aims

to predict the human behavior by generating a probability model of the observed action

schedule from the target person.

Several different prediction algorithms - that were proposed by Cook et al. in [47]

- are briefly summarized in the following paragraphs, starting with the Smart Home

Inhabitant Prediction (SHIP) algorithm. In order to predict the behavior of inhabitants,

sequential matching of events is applied on a collection of past sequences that the authors

defined as history. The whole algorithm operates in two steps: At first, a function lt(s, a)

is computed that returns the length of the longest sequence at time t for state s that

ends with action a. In addition to this, a frequency measure f(s, a) is calculated, that

represents how many times action a has been chosen as the most probable action in

state s. In the second step for every action a, a correlation between the longest sequence

and frequency of action a is evaluated. SHIP returns the action a with the greatest

correlated value as most probable next action. While the meaning of t and a can be

derived by their respective names, a definition of state s was not given by the authors.

Due to the description and usage of the term state, it is assumed that the algorithm

uses a Markov-Model-like approach in order to match the sequences.
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The second algorithm - called Active LeZi - is based on the LZ78 text compression

algorithm [18]. In fact, the LZ78 algorithm is enhanced by a sliding window, that

is sized by the longest sequence (k) seen so far, in order to generate an order-(k-1)

Markov model. For prediction, the generated order-(k-1) Markov model is utilized by a

predictor of the Predict by Partial Matching (PPM) family. In PPM, the probabilities of

all ordered Markov models from order-1 to order-(k-1) are accumulated and the action

with the highest probability is returned.

The last prediction algorithm that they proposed in [47], utilizes a task-based Markov

model to predict high level tasks in action sequences of inhabitants. In their approach,

the event stream is partitioned into individual tasks, based on fixed thresholds for sensor,

location and time. Followed by this, a k-means clustering algorithm is applied onto the

set of tasks to cluster similar tasks using features like number of actions, the starting

time and duration, the locations visited and devices acted upon. For prediction they

trained a hidden Markov model, which transition probability is additionally seeded from

the clustered tasks.

Alam et al. proposed in 2012 a Sequence Prediction algorithm via Enhanced Episode

Discovery (SPEED) [38], to predict the actions of inhabitants in SHs. Based on the

assumption that inhabitants generate repeating patterns of activities over the day, the

continuous event stream is first split into distinct sequences, called episodes. Each

episode is embraced by two complementary events, exemplary referred to as ON and

OFF. After that, by using the maximum episode length of all discovered episodes as

window size, a decision tree is generated that is based on all subsequences in the respec-

tive window. In addition, the frequency of occurrence for the respective subsequence

is added to each node of the decision tree. Similar to Active LeZi, a PPM predictor is

applied on the decision tree, to predict the next action.

... and Behavior Learning

While AR and BP are very important tasks in AmI, Guralnik and Haigh challenged

the task in between by proposing an approach to learn a behavior model for the afore-

mentioned agent-based system I.L.S.A, using sequential pattern mining [52]. This task

does not only include AR, it can also be used for BP or anomaly detection. Since this
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approach differs from the previous elaborated tasks in the objective, that neither ac-

tivities should be recognized nor behavior predicted, it is structured separately as last

subsection in the state of the art of AmI.

In order to generate a model of the human behavior, high context information - when an

activity starts and ends - is required that can not be retrieved directly from the sensory

data. Therefore, a time region for every sensor is calculated, using the local minima of

a probability density function - that is applied to each sensor - as separator, in order to

segment the main event stream into several subsequences, suitable for sequential pattern

mining. Afterwards, the sequences - segmented from the event stream - are stored in a

database. Guralnik and Haigh defined a sequential pattern as frequent if its occurrence

in the database is greater than a user specified threshold, called minimum support. For

frequent sequential pattern mining they referred to several interchangeable algorithms.

However, since the algorithms do not validate the discovered sequences further, Guralnik

and Haigh applied three different filters during postprocessing - filtering for time regions,

pattern redundancy and sensor firing repetitions - to reduce the number of interesting

patterns. The final set of frequent sequential pattern is used as target human behavior

model.

Several approaches for AR and BP were elaborated, followed by a similar but still differ-

ent approach for behavior model learning. The approaches in AR highlight two general

disadvantages: The incomparability due to different data or data-specific algorithms,

and the strong sensor attachment in each approach making it impossible to reevaluate

the experiment or even implement it in a common SH. On the other hand, the elaborated

algorithms for BP and behavior learning mainly differ in the approach that segments

the event stream. While most of the authors tried to discover regularities in the data

using fixed thresholds or statistical methods, Alam et al. shined with a logical and easy

reproducible approach that can be applied in common SHs.

2.2 Machine Learning - Focused on Ambient Intelligence

Machine Learning - as a field of research - encompasses the challenge to program com-

puters to infer new knowledge based on previous experience [2]. The field is continuously

growing in applications and approaches of learning. Since the background of AmI is Ar-

tificial Intelligence, which uses ML to adapt knowledge over time, a brief state of the
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art in ML is given. Because the objective of this thesis is to generate rules from sensory

data of SHs, the state of the art is focused on approaches that aim to learn rules from

data. Such approaches, that learn solely from data without supervision, belong to the

unsupervised ML paradigm.

Section 2.2.1 discusses several state of the art unsupervised rule learning approaches.

Afterwards Section 2.2.2 elaborates the in Section 2.1.3 introduced approaches for AR

and BP from a ML perspective.

2.2.1 Approaches to learn rules

Rules can be derived from various different learning paradigms. In general, each paradigm

that discovers knowledge can be used to derive rules from it. However, since a state of

the art encompassing all learning paradigms in ML is out of scope for this thesis, only

a few selected are elaborated that are - in general - applicable for the objected task to

learn rules.

In [8, 24, 34] rules are extracted from results of clustering and applied for CL. Chiu [8]

extracted rules from subtractive clustering results to classify pattern. After the data is

clustered, rules are generated that compare new input data with the clustered one. If

similarity - given by a membership function - of new input data exists, it is mapped to the

corresponding cluster. Another approach is followed by Hruschka and Ebecken [24] who

proposed a rule learning approach to describe an artificial neural network and improve

the human understanding of it. They first trained an artificial neural network. Then

a clustering genetic algorithm is applied to find clusters of hidden units in the trained

network. Afterwards, rules are generated by describing the properties of each cluster.

Similar to Hruschka’s and Ebecken’s approach, Setiono [34] extracted rules by clustering

the activation values of the hidden units - from a trained neural network - into a small

set of clusters. If the number of inputs - connected to a hidden unit - is small enough -

defined by a user specified threshold - a rule will be created from the hidden unit, else it

will be split into several sub units according to the clusters discovered previously. The

previous two steps are repeated until rules for all hidden units are extracted. Finally

Setiono mapped the input data to the correct output data by merging the rules.

16



2 STATE OF THE ART

Another common approach to learn rules is to extract them from a decision tree by simply

traversing the path from the root to the leaf. Decision trees are popular approaches

for CL due to their simplicity and efficiency. Although CL is generally applied on

supervised learning problems, Karakos et al. challenged in [58] an unsupervised approach

for decision tree generation by using clustering as decision criteria. Instead of classifying

a feature at each node of the decision tree, they successfully applied an optimization

algorithm on clustering to split the features according to the clusters they are in.

It is also common to induct rules directly. Several approaches for RI were proposed over

the past decades. Clark and Niblett proposed in 1989 one of the first rule induction

algorithms - called CN2 [9] - that learns class descriptions from given examples. The

algorithm combines the efficiency and noise robustness from the ID3 [33], an algorithm

that generates decision trees from data, together with the flexible search strategy of the

AQ algorithm family [28]. In 2007 Reynolds and de la Iglesia proposed how Evolutionary

Algorithms are applied to the field of RI [71]. By representing a rule or a set of rules

as a tree - as described above - they successfully evolved the populations of different

trees using Multi-Objective Genetic Programming to discover simple rules, that describe

classes of interests.

Last but not least, Association Rule Mining - a branch of RI - aims to discover relations

between elements in data. ARM is very well elaborated and popular compared to other

rule learning approaches, because it does not require labeled data, follows the unsuper-

vised learning paradigm and most important it is simple and comprehensible. According

to Hipp et al. who surveyed several ARM algorithms in [54], the most known algorithm

is Apriori, proposed by Agrawal et al. in [36]. The algorithm was first introduced to

discover relations in context of shopping behavior. For example if a person buys product

A and product B it is very likely that he buys product C too. Although the algorithm

discovers association rules reliably, Apriori is very inefficient since it needs to scan the

database multiple times.

From the elaborated approaches any one could be applied in this thesis to learn behavior

rules for the SH management. However, most suited is ARM because it does not need

any special data structure, it can be used most reasonable to discover relations between

sensors and most important it discovers rules directly and does not need to extract them

17



2 STATE OF THE ART

from another data structure. Therefore Apriori and its entitled successor - FP-Growth

- are elaborated in more detail in Section 3.3.1.

2.2.2 Ambient Intelligence from a Machine Learning perspective

ML is in general parted into three different learning paradigms. Beside the unsupervised

approach that learn knowledge from data, supervised and reinforcement learning are

common paradigms used in various applications. Supervised learning is usually applied

for classification tasks and learns by supervision. Supervision is usually given by previous

classified data that is compared to the own classification result. A classifier learns to

classify by minimizing the error between the own and the supervised classification. After

this training phase, the classifier is applied to unknown data. Reinforcement Learning

follows a completely different paradigm. Whilst supervised approaches learn from a

giving function and unsupervised approaches revert engineers the function from the

data, reinforcement learning actively explores the best function according to its quality

of solution. Although this learning paradigm does not have a supervisor to learn from

errors, a function is given that values the solution found with respect to the solution

space and tries to optimize the respective function by searching for better solutions.

Chen et al. proposed in [44] an approach that follows the idea of Evolutionary Algo-

rithms. By alternating ontology model learning and activity classification, they proposed

an algorithm that evolves itself to optimize AR. This approach follows the reinforcement

learning paradigm with an initial seed - gained by experts - to solve the problem of a

“cold start”. Activity recognition is achieved by a pattern recognition algorithm, that

uses the ontology model as knowledge to classify a sensor data stream into known and

unknown activities. Unknown activities are then valued to the current ontology model

and if exceeding a threshold adapted to the ontology model and thus reinforce the cur-

rent solution. Missing an exact description of the sensors, by reading their publication,

it is assumed that they used RFID tagged objects to generate events. Although adaptive

in their sensor space, their approach - on the same time - lacks the possibility to expand

it. In addition the initial seed requires prior knowledge of the target activity model,

which is - at least in fresh installed SHs - not always given or known.
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An unsupervised approach for AR was proposed by Bouchard et al. in [42]. By attaching

labeled RFID tags to casual objects in an apartment, they were able to induce seman-

tic to activities by tracking the location of every tagged object. To discover relations

between these objects and infer activities from the relations, they applied - for compar-

ative purposes - two ARM approaches, the Apriori and Generalized Sequential Pattern.

The relations are mapped to activities according to statistical functions for plausibility

and normalization, that are applied at the objects in the relation. Every sensory data

is assigned to an activity using a calculated spatiotemporal relation. Bouchard et al.

already stated that their trilateration algorithm for determining spatial relations has

poor accuracy regarding the real position of the objects. Beside the missing application

in common SHs, another disadvantage of their approach is the necessity to maintain a

dictionary containing the semantic of every RFID tagged object.

In the final elaboration for AR, Yang and Cho approached the task in [79] from a

supervised learning paradigm. They used manually annotated sensor stream data in

order to train a Bayesian network. The input data consisted of various different sensors

(accelerometers, biomedical sensors, etc.) that were used to classify the signal stream

into the annotated activities. Although capable of handling a heterogeneous sensor

space - especially biomedical data - the algorithm lacks adaptation since the Bayesian

network requires a defined input space. A change in input space requires new training

of the Bayesian network, resulting again in the requirement of annotated data in the

new sensor space.

As before mentioned, BP is usually applied on the results of AR and does not require

the approach itself. Hence it will be elaborated separately from AR in the following.

The approach SPEED proposed by Alam et al. in [38] follows the unsupervised learning

paradigm, since its whole prediction model is based on stochastic calculations applied on

a segmented sequential event stream. Every event in a subsequence - called episode - is

used to calculate the most probable subsequent events. As before mentioned, a sequence

is defined by two complementary events, such as ON and OFF. The resulted probability

matrix can be used to predict the next event in real time. The approach - although

unsupervised - requires pure binary event data that is not always given, especially in a

SH with climate management.
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In a similar fashion the approaches proposed by Cook et al. in [47] follow the unsu-

pervised learning paradigm by using statistical and probability theory as background.

They already stated that their SHIP algorithm stores the whole event history in memory

in order to calculate the most probable next event and that their results on real data

were terribly bad compared to synthetic data. Their second algorithm - Active LeZi -

uses a order-k-1 Markov model and PPM to predict the next most probable event. The

drawback of this approach is that current events are not taken into the prediction. To

compensate all previous drawbacks, they proposed the task-based Markov model. This

approach utilizes - as labeled - a hidden Markov model and in addition a k-means clus-

tering to improve its training. Although this approach may be able to predict the next

most probable task reliably, it requires fixed thresholds to divide the event or action

stream into subsequences of different tasks, requiring prior knowledge.

While the previous approaches predicted only human behavior with no further appli-

cation, Guralnik and Haigh learned a model in [52] that resembles the behavior of an

inhabitant. Although differing from BP, the proposed approach follows the paradigm of

unsupervised learning by using a sequential pattern mining algorithm to determine the

frequent activities for the behavior model. Sequences for the pattern mining algorithm

are gathered by segmenting the event stream based on the distribution of sensor firings

over the day. On each local minima of a probability density function - that is applied

on every sensor - the event stream is split. In addition they biased the system by relat-

ing higher semantics of activities to the time they were executed. In this case a meal

between 8 AM and 10 AM would be interpreted as breakfast. Although the proposed

approach of Guralnik and Haigh is abstract enough to be applied at any SH, the learned

behavior model is based on the assumption that humans does everything, everyday in

the same manner. Since this theory - although imaginable - does not reflect the reality,

this approach is not suited for the objected system.

It can be summarized that the researched approaches for AR lacking a fundamental

requirement for AmI, the capability of self-adapting the environmental input space. In

addition the approaches for BP require a mechanism to reliably segment the event stream

after objected activities. The proposed system in this thesis is differentiated from the

previous elaborated approaches in such way, that it does not only adapt its feature space

by the sensors installed at the SH, but also segments the event stream in a logical and

unique manner.
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3 Project Context and Background

To comprehend the decisions made for the proposed rule learning concept, this sec-

tion is concerned about topics in the context of the project. Starting with the area of

application, Section 3.1 highlights the difference between a common home and a SH,

elaborates openHAB - the utilized SH software - and introduces other SH solutions at

that the proposed system could be applied to. In addition, since the main objective

is to learn rules for the rule-based system of a SH, its general concept is elaborated in

Section 3.2. After the area of application is understood, background knowledge about

Rule Induction is provided in Section 3.3. Last but not least, in order to comprehend

how biomedical data can be integrated into the learning system, different biomedical

data types are introduced in Section 3.4 including an example using the HRV.

3.1 Initial Situation - The common Smart Home

To embrace all variations of SHs, the concept of controlling environmental features in

an apartment is introduced in a setup and software independent way. Figure 1 outlines

the main differences between a common home and its SH realization.

In a common home (see Fig. 1a), domestic environmental features like temperature,

light or the states of windows are observed and regulated by the inhabitants. A SH (see

(a) A casual home interaction example. (b) The same example as a smart home.

Figure 1: The comparison of a common home and its Smart Home implementation.
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Figure 1b) expands the casual home in such a way, that those environmental features

are observed and regulated by a program - using sensors and actuators - while at the

same time, providing remote access to regulate the domestic environment manually by

the user. It does this by establishing a communication network of various sensors and

actuators, that communicate among themselves or with a central station called Central

Control Unit (CCU). These types of communication are referred to as centralized and

decentralized.

In decentralized communication the devices communicate directly between each other.

Due to this, a setup without a CCU can be realized. This increases the failure-resistance

of the overall SH system, because the failure of one communication channel does not

affect sensors or actuators of different channels. However, direct communication com-

plicates the installation of complex environmental regulation, because the only usable

data an actuator gets, is from directly connected sensors. Therefore, decentralized com-

munication is usually applied in simple scenarios, like a brightness sensor that controls

a roller shutter or a light switch triggered by a motion sensor.

The other approach, centralized communication uses a CCU through which every sensor

and actuator communicates with. Usually the SH base analyzes its central information

bus and manages all actuators according to a control logic. Popular SH solutions - like

openHAB or Home Assistant - realized this control logic in form of rules. By using rules,

the inhabitant is provided with a tool to describe scenarios in which an actuator should

behave in a specific way. These rules are then checked by the CCU, and executed if such

a scenario occurred in its information bus. However the drawback of this communication

type is striking, if the CCU fails, all logic and every centralized functionality breaks down

too.

Beside the communication type, the amount of supported protocols that are used by the

sensors and actuators for communication, is another important aspect of a SH. Over

the years various partly incompatible protocols were developed that provide different

functionalities for communication between sensor or actuator devices in SHs. For a

SH this is restrictive, because a device usually supports only one protocol, making the

SH subjected to one device manufacturer. A common way to avoid this restriction, is

the usage of a communication device plugged into the CCU through that it - if it is

supported by the software - can communicate with devices using different protocols.
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Since a qualitative state of the art overview of all communication protocols used in the

SH context is missing, an elaboration of these protocols is not given.

The last aspect that should be noted is, whether the data is processed through the

Internet into a cloud or locally through a CCU and stored in a database. In general, a

SH exists local at the apartment and manages only the domestic environment. However,

more and more SH cloud solutions are proposed where the devices may be installed

at the apartment, but the logic and intelligence of the SH is applied on servers of the

manufacturer. Since all data collected by the sensors are forwarded directly to the servers

of the manufacturer, the inhabitant needs Internet access not only to control the domestic

environment remotely, but also to even install the SH. The main advantage of such cloud

solutions - at least for the inhabitant - is convenience, because the maintenance of the

CCU is delegated to the manufacturer.

To finalize this section, many SH solutions were developed that differ in communication

type, supported protocols, control logic and also in range of the data processing. From

all solutions, openHAB stands out because it is an open source SH software that is

completely written in Java, easy extensible, supports a broad variety of devices and runs

autonomously on a local computer. Therefore in Section 3.1.1 openHAB is elaborated

in more detail. For the sake of completeness, a few other SH solutions are introduced

briefly in Section 3.1.2.

3.1.1 openHAB

openHAB (open Home Automation Bus) [63], continuously developed since 2009 by

Kreuzer [59], is a platform independent home automation software built on Eclipse

Equinox and completely written in Java (Fig. 2). Eclipse Equinox is an implementation

of the OSGi (Open Services Gateway initiative) core framework specification [69], that

allows management - like starting, stopping or managing communication - of modules

and services (called bundles) during runtime. openHAB seizes this concept of dynamic

bundle integration to change its functionalities variably during runtime.

The openHAB software architecture is composed of three different types of modules:

The OSGi framework implementation Equinox, the core components of openHAB and

the openHAB add-ons. Since openHAB is still under development, a fix point in the
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Figure 2: The software architecture of openHAB [66].

development process is needed to describe the software architecture. Due to this, the

current stable release of openHAB in version 1.8.2 is used as reference.

OSGi Framework: From all services listed in the OSGi Compendium [39] that is

implemented by the OSGi Framework Equinox, the openHAB software uses the following

five services:

The Logback / SLF4j (Simple Logging Facade for Java) service provides a message logger

for the OSGi Service Platform. The Declarative Services provide a publish/find/bind

model for the usage of services. Applications use this model to manage the process

and communication of bundles. The Event Admin service provides an inter-bundle

communication mechanism based on a publish and subscribe model. The Configuration

Admin service enables an operator to configure deployed bundles. The HTTP Service

provides network communication access to bundles for HTTP, HTML, XML and other

servlets.

openHAB Core Components: Since an official specification of openHAB’s core

components is missing, a high-quality project documentation [62] from Peter Manheller

served as basis for the following description.
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Figure 3: An overview of the communication structure in openHAB [66].

The main functionality of the openHAB core implements the Event Admin service as

an event bus, providing a communication channel between bundles (see Fig. 3). The

openHAB Base Library encompasses additional functionalities like a persistence service

to store event data on databases [67], a script engine service to execute openHAB-scripts

and several transformation services to process documents of different languages [68].

The openHAB Repository keeps track of the current state of all items in openHAB.

In addition it manages the communication between bundles and items. An openHAB

item is an abstract object that stores data which can be read from and written to in

order to interact with it (as shown in Fig. 3). The openHAB REST Service component

implements the HTTP service of the OSGi framework to provide network access for the

user.

openHAB Add-ons: The openHAB software divides OSGi bundles into five cate-

gories: item provider, protocol bindings, automation logic, user interfaces and add-on

libraries to provide a flexible configurable SH setup. The update interval of the bundles

and general settings of add-on libraries is defined at the core configuration of openHAB.
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The openHAB item provider initiates the items - that are managed by the aforemen-

tioned openHAB Repository - based on a configuration file, enabling the creation, man-

agement and deletion of items during runtime. The openHAB protocol bindings em-

braces many communication protocols to easily extend the functionalities of openHAB

with respect to the SH setup [64]. Each binding is implemented as an OSGi bundle.

openHAB’s automation logic encompasses a rule and a script engine. Scripts can be

used to tidy rule code by transferring redundant code into a script and execute it in the

consequent of an action rule. In addition, the rule engine is capable of parsing Java code

in the consequent of a rule, providing limitless possibilities of actions. The rule engine

grabs from the openHAB Repository all relevant items (see Fig. 3) to check their states.

Relevant items are those, that occur in the antecedent of a rule.

Beside a webpage based interface, openHAB provides user interfaces for various desktop

and mobile environments [65]. For reasons of simplicity, the user interfaces are configured

by declarative UI definitions of the sitemaps. An openHAB sitemap is a file written in

Xtext that configures the positioning of the declared items.

3.1.2 Other open source Smart Home solutions

Beside openHAB various other SH solutions were developed. Another popular open

source solution is FHEM [55] (pronounces [FEMM][72]), instantiated by Richard König

and continuously developed by a community around it. The project started in 2005

with a simple Perl script and was extended over the years by various modules from the

community. The server component in the system architecture (see Fig. 4) still consists

of a single Perl script, that is extended by various components that are connected via

interfaces to the server.

As visualized, the main functionality of the FHEM server is to provide accessibility of

the SH functionalities - included in the components - remotely over intra- or internet

connections. For this purposes the server provides several frontends for web applications

and smart phone operating systems, a floorplan module to create an outline of the

apartment including positions of sensors and actuators, and an information panel to

visualize sensor data in real time. Missing an internal rule-based system for complex
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Figure 4: The system architecture of FHEM based on [76]

device management, FHEM users are constrained to programmatically implement a rule

in a component or in the configuration file of the server.

Aside from FHEM that focuses on visualization and accessibility of the SH data, the

more recent SH software Home Assistant [75] is built around a state machine enabling

fast and simple home automation. The software architecture of Home Assistant - that

is completely written in Python - is visualized in Figure 5. As in the previous SH

solutions, the core functionality is the event bus that is used for communication and

facilitating of firings and listening of events. The state machine keeps track of the state

for all objects that are registered in the system. Components can provide services to

the user or other components using the service registry. The service registry is also

used to access services from other components. The timer - necessary to update the

state machine without sensor events - generates a simple event every second. A major

drawback in Home Assistant is its limited range of supported devices compared to FHEM

or openHAB.

Regardless of the comparison, the choice for a SH software should suit the personal

objectives of installing a SH. Every solution has its strengths and weaknesses. A solution

suited for every case needs to be developed yet.
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Figure 5: The software architecture of the Home Assistant software by [74].

3.2 Basics about Rule-based Systems

Rules are used by rule-based systems to infer knowledge in data and are therefore part

of knowledge-based systems. Knowledge-based systems generally consists of two compo-

nents, the knowledge base that contains informations and an inference mechanism that

uses it to infer new knowledge. In rule-based systems the knowledge base consists of a

rule base and a fact base whereas the inference mechanism concatenates the rules in a

rule base.

3.2.1 Rules and rule bases

Considering the definition of Beierle in [4, p. 72] rules are formalized conditional clauses

in the form of

If X then Y.

X represents a condition, also called premise or antecedent, which needs to be fulfilled

in order to fulfill the conclusion Y, also called action or consequent. The state, if a rule’s

antecedent is fulfilled and the consequent is put into effect is also known as firing the

rule.

Rules can be differentiated by the formulation of the consequent. A rule of the form - if

X then follows Y - is a previous mentioned conditional clause while a rule of the form -
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if X then do Y - is called a production rule. Production rules are used in this work to

execute actuators.

The previous presented rules are of abstract nature and do not contain any domain

knowledge. Domain knowledge in rules is represented as relations between facts (see

Section 3.2.2). A common approach to formalize domain knowledge as rules is to consult

a domain expert. Another approach is to infer domain knowledge from data which is

followed by RI (see Section 3.3).

Irrelevant of the formalization approach, it needs to be considered that rules with contra-

dicted conditional subclauses of the form - if X and ¬X, then Y - will be never fulfilled.

The detection of such contradicted rules is a NP-complete problem since it is related to

the boolean satisfiability problem (SAT) described in [26] by Richard M. Karp.

A rule base is a collection of rules that are applied on a fact base. If multiple rules

manipulate the same facts, they can influence each other, infer unwanted knowledge or

even stuck in infinite rule firings. Therefore, to produce qualitative results and avoid

such issues, a rule base usually encompasses only a fragment of all possible rules that

are necessary to achieve the objective.

3.2.2 Facts and fact bases

As before mentioned, facts are used by rules to infer knowledge. But before inference

is applied it needs to be defined what facts are. Considering Beierle [4, p. 76] facts are

objects including a description of their state, usually consisting of a discrete value. How-

ever, like an object can be a composition of multiple objects, a fact can also encompass

multiple objects with their respective descriptions.

Rules represent relations between one or more objects and their respective states. A

rule’s consequent is able to modify the fact base during runtime which could lead to the

fulfillment of further rules. The linkage of consecutive fulfilled rules is discussed in the

following section.
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Figure 6: The abstract concept of rule-based systems by [80].

3.2.3 Inference mechanism

While rules and facts build the knowledge in a rule-based system the inference mechanism

is a strategic problem solving algorithm that links this knowledge together to infer new

knowledge which is again stored in the knowledge base (Fig. 6).

The general linkage approach of rule-based systems is to apply rules consecutively on

the fact base. The most common concatenation strategies are forward and backward

chaining.

The forward chaining inference strategy concatenates rules transitively by checking its

antecedent and if fulfilled, executing the consequent. This is continued over all rules

until no more conclusions are added to the knowledge base.

While the forward chaining inference strategy is suited to create an overview of a system,

information of single facts are lost during the process, since the algorithm does not stop

until no new knowledge can be inferred. Complementing this strategy, backward chaining

searches for rules in the rule base that contain a given goal in their consequent, adding

its antecedent if unknown to its goals and continues the search until all goals are reached.

3.2.4 Rule Engines

In order to execute rules, a rule engine is required that manages the fact base - usually

realized as working memory - and implements the inference mechanism. In this section

several open source rule engines are introduced, that are completely written in Java.

One of the best known rule engines is JBoss Drools [14]. Drools is licensed under the

Apache License 2.0 and developed continuously by the JBoss community since 2001. In
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its current version 6.4.0, Drools uses the PHREAK algorithm as inference mechanism to

match rules with facts in the working memory. The rule engine uses its own syntax for

rule description, called the Drools Rule Language (.drl). While maintaining the classic

If-Then schema, the syntax is mainly inspired by Java providing an additional Java

parser for the consequent of the rules.

Another popular rule engine is OpenRules [31]. Since 2003 OpenRules was continuously

developed by the identically named company. It is dual licensed under the GNU General

Public License for non-commercial usage and under the OpenRules commercial license

for commercial services. From the beginning, the rule engine utilized decision tables

implemented in Excel spreadsheets as rule base. Single rules are represented as rows in

the decision table and executed - by default - in top-to-bottom order as defined in the

excel spreadsheet.

Two different implementations of a rule-based system were already presented. However

it is not necessary to develop complex software in order to create a rule engine. In 2013

Mahmoud Ben Hassine developed a stupid rule engine called Easy Rules [53]. Easy

Rules is licensed under the MIT license and in contrast to the previous rule engines,

Easy Rules can be seen as a collection iterator that checks a collection of rules after

their respective conditions and executes their consequents if matched. In Easy Rules,

a rule can be represented by two ways: As a class that implements the Rule interface

or extends the BasicRule class, and a Plain Old Java Object (POJO) that utilizes the

@Rule annotation inspired by the JUnit syntax.

After understanding the concept of rule-based systems it is important to understand

how rules can be learned from data, which is elaborated in the following section.

3.3 Rule Induction

Rule Induction (RI) as an area of ML aims to induce new knowledge in form of rules

from given experience. Various paradigms for RI were developed that differ in objective,

approach to discover the knowledge and applied data structure. A well elaborated

approach - called Association Rule Mining (ARM) - is used in this work to discover

the backbone of the target rule. Since many different algorithms for ARM exist, two

well known representatives - elaborated in Section 3.3.1 - were chosen for this thesis to
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proof the concept. To further induce knowledge onto the backbone of the rule, another

RI paradigm is applied, called Classification (CL). As for ARM, many algorithms were

developed that induce knowledge from training examples by classifying them first and

extract decision rules from the learned classifier afterwards. Again, to proof the concept,

three different CL approaches are introduced in Section 3.3.2.

3.3.1 Association Rule Mining

ARM, as specialization of RI, aims to discover rules for associations in databases. An

association rule is defined as an expression of the form X ⇒ Y where X and Y are sets

of items, in the following referred to as itemset. The meaning of such association rules

is intuitive: If an item X occurs in the itemset, it is likely that an item Y will occur too.

More precisely, given a database D containing itemsets T ∈ D, an expression X ⇒ Y

means that whenever T contains X it is - with a given confidence - likely that T also

contains Y . The confidence is usually represented as percentage describing the ratio

between itemsets containing X and Y with all itemsets containing X.

ARM is usually applied on Frequent Pattern Mining (FPM), because the values that

are required to determine the confidence of the rule, are computed incidentally by FPM

algorithms. Therefore the real challenge in ARM is to discover frequent pattern in

itemsets. As a subfield of Data Mining, FPM aims to discover interesting pattern in

data, where the interest is derived from the frequency of occurrence in the data. Several

approaches for FPM were developed and applied to various types of:

• data (e.g. transaction or sequence databases, streams, spatial data, graphs, etc.),

• pattern (e.g. subgraphss, association rules, lattice, sequential pattern, etc.) or

• problems (e.g. discovery of frequent and compact item sets or sequential rules).

In this section the well elaborated ARM algorithm - Apriori - and its designated successor

- FP-Growth - will be introduced. Since the extraction of association rules from the

results of FPM is a common approach and shared among several ARM algorithms,

only the FPM part of the respective ARM algorithm is considered. The extraction of

association rules from frequent pattern is presented afterwards.
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ID Itemset

1 Bread,Butter,Milk

2 Bread,Honey

3 Milk,Eggs,Flour

4 Bread,Milk,Eggs,Cheese

Table 1: An example of a transaction database.

FPM algorithms are usually applied on a transaction databaseD. A transaction database

stores data numbered in sets of unique items. Such a set is called transaction T , written

T ∈ D (see Tab. 1). An itemset Li ⊆ T - where i denotes the length of the set - is called

frequent if its occurrence in all transactions exceeds a manual specified threshold called

Minimum Support s.

Apriori

Apriori was proposed by Agrawal et al. in 1994 in order to discover association rules

in large databases [37]. The algorithm operates iteratively bottom-up, increasing the

length of the frequent itemsets by joining Lk−1 with itself - where k represents the current

itemset length - until no new frequent itemset are discovered. To apply pruning on the

generated itemsets, a requirement needs to be satisfied that demands that any subset

of a frequent itemset needs to be frequent too (in the following referred to as Apriori

Property). For a better understanding, the steps of the algorithm will be described in

the following enumeration:

1. Scan the database to get the frequency of every item in all transactions, also re-

ferred to as support S, generate for every item a 1-itemset and apply the threshold

s on it to get L1.

2. Use all variations of Lk−1 itemsets in combination with the Apriori Property to

generate frequent candidate k-itemsets.

3. Scan the database to get the S for each frequent candidate k-itemset and filter

those out that are below s to get Lk. Repeat Step 2 & 3 until no candidate set

passes s.
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Figure 7: A complete FP-Tree example generated from the database in Table 1.

The advantage of Apriori is the pruning paradigm that filters out infrequent itemsets

on the fly. Its major disadvantage is the multiple database access that is executed each

candidate generation.

FP-Growth

While Apriori defined a powerful paradigm for pruning, its operations are applied on

arrays of items ignoring any - for frequent pattern mining - superior data structure. An

approach that differs in this way is the FP-Growth (Frequent Pattern). FP-Growth,

proposed by Han et al. in 2000 [23], uses the properties of a tree data structure to

discover frequent pattern without candidate generation. In general the algorithm is

divided into two phases, building a pattern tree and extracting frequent pattern from it.

To build the FP-tree, the algorithm first calculates the support of every item in a separate

table to determine its priority. Then every sequence is reordered in priority of support

to every item it includes. Finally the FP-tree is build traversing through every sequence

iteratively, creating a new node if an unknown item transition appears and increasing

the counters - applied on each node - every time the traversal passes an already created

node. Pointers are maintained between nodes of the same class creating a single linked

list for every class. They will be used in the second phase for faster discovery of frequent

items. As example, the final FP-tree generated from the transaction database in Table

1 is visualized in Figure 7.

After the FP-tree is built completely, the patterns are extracted by a bottom-up divide

and conquer traversal. Starting with the least prior item, the support of all points on

the single linked list is summarized and the item is extracted as frequent pattern if its

support exceeds the Minimum Support s. Then the FP-tree is traversed recursively in
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ID Itemset

1 Bread,Butter,Milk

2 Bread,Honey

3 Milk,Eggs,Flour

4 Bread,Milk,Eggs,Cheese

Table 2: The database to build the conditional FP-Tree for the frequent item Eggs,
based on the database of Table 1

inverse priority order, generating longer patterns by exploring paths of the tree that end

with the previous discovered frequent item. For this, conditional FP-trees are generated

in order to determine the support of all prefix path, that end with the frequent item. A

conditional FP-tree is a tree, that would be built by the algorithm if it used the prefix

tree-paths of an item in all branches as database. This means that only those itemsets

are used as database, in that the frequent item is included while it is excluded for the

FP-tree generation itself. An example of the resulted database to build a conditional

FP-Tree for the prefix tree-path of the item Eggs is given in Tab. 2. The algorithm

terminates if the root node of the original FP-tree is reached.

Derivation

In order to derive association rules from the discovered frequent itemsets, Agrawal et al.

proposed in [37] an approach that requires simple counting and a threshold, called rule

confidence. Considering the initial situation that a list of frequent itemsets F is given.

Based on this, the extraction of association rules can be separated into the following

steps:

1. For each frequent itemset in F extract all non-empty subsets {si}.

2. For each subset {si} export the rule {si} ⇒ {F − si}.

3. Calculate the confidence as Conf({si} ⇒ {F − si}) = Support(F )
Support(si) .

4. Drop all association rules with lower confidence than the given threshold.

This simple derivation of association rules from frequent itemsets highlights the fact,

that the most challenging part in ARM is FPM.
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3.3.2 Classification

Although ARM can be used to discover strong relations between sensors, they are not

suited to describe a class or even classify classes as implied by [19], because the resulted

set of discovered association rules would be enormous and highly specialized on every

value. Therefore, in order to differentiate relevant from irrelevant situations before an

actuator’s execution, CL is applied.

In general, each CL approach can provide - more or less simple - a set of decision rules

that describes the learned CL model. However, logic based approaches like decision

trees or rule set induction are focused in this work, due to their easy interpretation and

transparency. In addition, since there exist various different approaches for CL, only a

few selected are introduced.

Decision Trees: PART

The algorithm PART - developed by Frank and Witten in 1998 [17] - combines learning

paradigms from C4.5 and RIPPER by using the separate-and-conquer principle (RIP-

PER) to build partial decision trees (C4.5) and extract in each iteration the “best” leaf

into a rule. Frank and Witten experimented with different definitions of best, like the

lowest error rate according to the Bernoulli heuristics of C4.5 but used the most general

as best since other approaches did not have any effect on the overall accuracy of the

generated rules.

A rule is generated similar to C4.5 by building a decision tree. Starting at the root

the algorithm splits a given set of training examples recursively in a breadth-first-search

approach. At each split the entropy is calculated for every attribute in the examples,

following the branch of the smallest entropy until all children of a node are leafs. Then

pruning begins. The pruning of PART is similar to the subtree replacement of C4.5. If

the estimated error for the subtree is greater or equal to the estimated error of a node,

the subtree will be discarded and the node will turn to a leaf. After that the algorithm

backtracks its path exploring the nodes sibling. However if during backtracking a node

is encountered whose children are all further nodes, then the remaining subsets are

not explored and the corresponding branches are left undefined. Due to the recursive

structure of the algorithm, this event will terminate the decision tree building.
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Finally - as mentioned before - the most general leaf is extracted as a rule. This is

accomplished by transforming the path from root to leaf as a rule. The rest of the

decision tree will be discarded. The aforementioned separate-and-conquer strategy is

applied in the rule set generation process. For every rule that is built, its covered

instances are removed from the training set and the procedure starts again until no

instances are left.

Ripple Down Rules: Ridor

Ridor is an implementation of the RDR (Ripple Down Rules) technique - proposed by

Compton and Jansen in 1990 [10] - for knowledge acquisition and maintenance that

follows the rule generation procedure of an expert. By starting with a default rule - a

rule with no conditions and the most frequent class as target - exceptions are generated

for the default rule. While training data is processed, exceptions are recursively added

to other exceptions until each exception contains either only exceptions or a pure set

of classes. These exceptions are then turned into rules. The resulted rule set contains

rules for every case except the default rule. While RDR started as a binary classification

technique, Kang et al. upgraded the approach in 1995 to support multiple classes [25].

It should be noted that RDR resembles a lot the generation of a decision tree. However,

the main difference to a decision tree is, that the decisions are made upon on exceptions

of conditions, and that they do not need to cover all cases.

Inducing Modular Rules: PRISM

PRISM - introduced by Cendrowska in 1987 [7] - originates from the ID3 algorithm -

the predecessor of the aforementioned C4.5 - that generates decision trees from data.

Cendrowska argued that the origin of one of ID3’s major weakness - the decision tree

output - lies in the inductive learning of the algorithm and proposed an alternative

approach.

PRISM can be described in five steps. If rules for multiple classes are required, this

algorithm can be applied on every class δn where n ≤ N and N is the number of all

target classes:

1. Calculate the probability of the occurrence for every attribute-value pair αx in δn.

37



3 PROJECT CONTEXT AND BACKGROUND

2. Select the most probable αx and create a subset of the training set comprising all

instances that contain the selected αx.

3. Repeat steps 1 & 2 until the training set contains only instances of class δn. The

resulted rule is a conjunction of all attribute-value pairs used to classify this ho-

mogeneous subset.

4. Now remove the homogeneous subset from the original training set.

5. Repeat steps 1 - 4 until all instances describing class δn have been removed from

the original training set.

This approach can be repeated after the original data is restored for every other class. It

has been noticed that the induction approach is very similar to ID3’s approach. However,

the major difference lies in the attribute-value choice of both algorithms. While ID3 aims

to find the most relevant overall attributes, PRISM focuses on finding only relevant

values of attributes.

3.4 Biomedical Data

Since the term biomedical data embraces a broad variety of different perceptions of

data, this work defines biomedical data as data that is: (1) measurable, (2) is emitted

continuously by a human body and (3) is somehow related to the physical condition of

the person. In addition, because it is assumed that a person can behave differently or

prefer a domestic environment only a under specific physical condition, this data can be

used to sensitize a system after the current condition of an inhabitant.

Nevertheless, one should not think that the raw data of his heart rate or blood pressure

will have any affect on the learning system. The data needs to be prepared and inter-

preted in order to gain meaningful information from it. Therefore, this section aims to

introduce various different types of interpretable biomedical data and exemplary elabo-

rates on the HRV, which information can be used to sensitize the system.

3.4.1 Types of Biomedical Data

Various different measurable biomedical features exist that describe the current physical

conditions of a person. The measuring method of biomedical data depends on the feature
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and is usually divided into invasive and non-invasive techniques. As named, invasive

measurements invade the human body by using sharp tools like needles. The duration

of the measurement for invasive techniques is limited, because the body is stressed due

to the intrusion and requires time to recover from it. Although limited in time frame, a

long distance observation can be realized by repeating the measurement periodically. A

well known example for an invasive measured biomedical feature is blood glucose, which

is regularly checked by people who suffer from diabetes. Non-invasive techniques on

the other hand measure biomedical features that a person emits out of his body. Many

of them can be measured continuously because they do not harm the body. Popular

examples for non-invasive biomedical features are the temperature, heart rate or blood

pressure.

In the context of SHs, non-invasive biomedical features are preferred because they can

extend the continuous observed domestic feature space, by features from the supported

subjects. Using discontinuous data always requires additional computation for regression

and prediction, while never reaching the accuracy and reliability of continuous data.

Regardless of the time space, the data needs to be interpreted correct in order to sensitize

the system. An example for an interpretation of biomedical data is given in the following

section.

3.4.2 The Importance of Heart Rate Variability

Every living person has a heart beat. It is a series of cell reactions that pumps blood

through the body, refreshes its oxygen saturation and is set in motion by the electrical

signal of a unique composition of cells, called the sinus node. Its frequency is described

by the heart rate, that states the number of beats per minute. The HRV describes the

differences of the time intervals between each heart beat.

Usually these time intervals vary each time, because muscle tension, breathing rate,

sweating and other energy consuming functions in the body change continuously requir-

ing always different amount of energy. The heart tries to maintain homeostasis and

varies the production of energy according to the current need. A healthy body will

therefore always have a varying HRV.
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Figure 8: An electrocardiogram that highlights the R-R interval by [77]

However, if a person is stressed or something else is disturbing the cardiovascular system,

the HRV becomes rigid. It was observed that the HRV can be accurately used to indicate

stress on a person. Olsson confirmed this relation during several studies in [30]. A low

variability in the interval of time between two heart beats indicates that the person

is stressed. This indication can be used to determine the condition of an inhabitant,

adapt the domestic environment according to the past observations of his behavior in

this condition and so, sensitize the system to the inhabitants.

The HRV can be measured in time domain or frequency domain. In time domain it

is determined based on the Inter-beat Interval (IBI), that measures the time in mil-

liseconds between two heart beats, also called the R-R interval in an electrocardiogram

(see Fig. 8). Important measures in time domain are the standard deviation of the

IBI or the NN50, that counts every consecutive IBI that differs from the previous by

more than 50ms. By using Fourier or Fast Fourier Transformation those measures can

be transformed into frequency domain, enabling the exploration of IBIs as a function of

frequency.

By preprocessing the HRV over the heart rate data and clustering it into several cate-

gories, the rule learning system will be enriched by a feature that indicates the current

stress level of the inhabitants and therefore probably relate its behavior to it. It should

also be noticed that - beside sensitization - the interpreted biomedical data could be

used to optimize the behavior of the system against some calibrated optimum. How-

ever, since the calibration procedure would require domain knowledge from an expert,

it was not included into the concept of the system.
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In Section 2 the current state of the art in AmI for SHs was elaborated, which main

conclusion was that most of the current approaches are specialized on sensors, lacking

the capability of self-adapting their input space and vary in the definition of behavior

related context.

In this section, a solution for behavior rule learning is proposed, that tackles these

disadvantages and addresses AmI for SHs from a more practical perspective. For this,

Section 4.1 starts by revisiting the objected learning problem in more detail. Based on

this the general behavior rule learning concept is described in Section 4.2. Finally, the

adaptation mechanism for the learned rules is introduced in Section 4.3.

4.1 The Learning Problem

Considering the definition of a Learning Problem by Tom Mitchell [29, P. 2]:

A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in

T, as measured by P, improves with experience E.

With respect to this definition, the tasks in T are to learn the executions of actuators

- in a SH - similar to the usage behavior of the inhabitants. The experience E consists

of the SH event stream, where the history of the sensory states and past activations of

actuators are recorded in temporal order. The performance measure P is the F-Measure,

a value that describes the correlation between the accuracy of rules and the coverage of

relevant situations.

These entities are elaborated in the following subsections. In addition, the underlying

assumptions are described and similar problems are compared to this learning problem.

4.1.1 Assumptions

Since the setup of a SH varies from apartment to apartment, some assumptions need

to be defined in order to build a solid base line for the learning problem. The first
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paragraph guarantees that the data, on which the algorithms are applied on, consists of

sequential events from a SH and that some of these events are associated to the target

actuator. The second paragraph guarantees that, based on the inter-device association,

another contextual relation exists, which is observed directly or indirectly by the installed

sensors.

It is assumed, that the activation procedure of an actuator is observed by at least one

sensor that differs from the actuator itself. It is also assumed, that every actuator is

activated manually by the inhabitant in a more or less regular order of actions. Due to

the previous two assumptions, it can also be assumed that the observed event sequence

- before an actuator is activated - contains at least one regular event pattern.

Beside sequential observation it is assumed, that at least one domestic environmental

feature of the SH, that is influenced by an actuator or its respective activation procedure

- in the following referred to as the environmental state of an actuator - is observed by

sensors of the SH. Due to the assumption of regular event pattern before an actuators

execution, it is assumed that similar regularities for the observed environmental state

in a SH exist. Therefore it can also be assumed that the environmental state before

the execution of an actuator, contains at least one feature that is similar over previous

activations.

4.1.2 Similar Problems

Similar problems of AmI in SHs encompass the challenges of AR and BP as described in

section 2.1.3. In fact, this learning problem can be categorized between these problems.

As for AR this learning problem relies on sequences of events to detect known pattern

of activities. However, the objective is not to recognize different pattern of events in

order to describe an activity that the inhabitant is executing, but to describe when a

actuator should be executed.

The main difference to the BP is not only the objective but also the way the behavior

model is generated. While BP first generates a model to predict the behavior of the

inhabitants, this problem first generates rules that represent one aspect of the behavior of

the inhabitant. By putting every aspect together, the behavior model can be generated.
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However, compared to BP there is no further usage, since learning the model is the main

focus of this problem.

4.1.3 Task

The aforementioned tasks in T can be seen as a behavior learning problem. Human

behavior can be seen as pattern of activities, that are executed under specific environ-

mental states and therefore follow some rules. Hence main task T can be divided into

ARM to discover the pattern that leads to the execution of an actuator, and CL to

discriminate relevant from irrelevant environmental states. By solving both subtasks, a

rule should be discovered that resembles the behavior of the inhabitant for an actuator.

Since a physical actuator device has usually several executable settings through that

the inhabitant influence its environmental state, every setting or usage mode needs to

be learned separately. The combination of a physical actuator device and one specific

configuration it is executed with, is in the following referred to as virtual actuator.

By applying the aforementioned concept on all virtual actuators of a SH, a rule set

should be generated that describes the whole behavior model of the inhabitant for the

SH usage.

4.1.4 Experience

The experience E in this learning task consists of the data observed by the sensors in the

SH, in the following referred to as event stream. Since ARM - as the first subtask of T -

requires a transaction database that it can be applied to, several itemsets are retrieved

by segmentation from the event stream. In addition, since CL - as the second subtask

of T - requires positive and negative training examples, several relevant and irrelevant

environmental states are extracted from the event stream.

4.1.5 Performance

Performance is measured by computing the F1-Score, a statistical measure that describes

the value of a classifier. Using the generated rule as a classifier by checking if it was

activated or not for a given situation, the F1-Score can be calculated to determine the
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Positive Situation Negative Situation

Classified Positive true positive false positive

Classified Negative false negative true negative

Table 3: A confusion matrix for a binary classifier.

performance of the rule. In order to ensure an independent evaluation, the performance

of the rule is determined on unknown data.

The F1 correlates the Recall and Precision of a classifier by calculating

F1 = 2 · Precision ·Recall
Precision+Recall

(1)

The Precision, also called the positive prediction value, describes the number of correct

classified situations in relation to all positive classifications formulated as

Precision = tp

tp+ fp
(2)

The Recall, also called true positive rate, describes the number of correct classified

situations in relation to all positive situations formulated as

Recall = tp

tp+ fn
(3)

To understand the formulas 1 - 3 easier, the responsible values are visualized in a con-

fusion matrix in Table 3. Finally, using the F1-Measure it should be considered - like

Reynold and de la Iglesia stated in [71] - that false positives and false negatives should

not always be weighted equally, because - depending on the area of application - a false

positive could lead to fraud data whilst a false negative could cost human lives when

something important is not detected.

However, since the importance of specific sensors in a SH can not be predetermined,

these assumptions can not applied to this project. Therefore - although biased - the

F1 measure is preferred because it can be easy calculated without the requirement of

true negatives. The determination of true negative context requires knowledge about

the inhabitant that may not be observable.
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Figure 9: The conceptual design of the learning approach.

4.2 Smart Home Actuator Rule Learning

After the learning problem was defined in the previous section, the conceptual challenges

of realizing the aforementioned learning task is addressed in this section. An overview

of the concept is given in Figure 9. The whole system can be divided into a rule learning

and an adaptation module. This section addresses only the concept for rule learning.

The adaptation mechanism - colored orange in Figure 9 - is described in Section 4.3.

For convenience reasons, the aforementioned virtual actuators - that were introduced in

the previous section - are in the following referred to as actuators.

The learning process - where the order of every component is identified by the top-left

number in Figure 9 - embraces a serial composition of components for data preparation,

ARM, data postprocessing, CL and validation of the learned decision rules. Since the

possibility exists, that no rules are discovered due to a bad allocation of training and

evaluation data, the concept is capable of trying to learn rules for the same actuator

several times on a different data basis. If the performance of a validated rule passes a

user defined threshold, it is exported to the file system of the SH. In addition, to keep

an overview of the learned rules and for management and adaptation reasons, several

basic informations about every exported rule are stored in a table and saved to the file

system of the proposed learning system.
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Figure 10: A exemplary split of one physical actuator into several virtual actuators.

As input, the learning system requires the data format of a common SH bus, where each

event on the bus has a timestamp, a label of the responsible sensor or actuator and the

data that it transmitted. The events are ordered chronically reverse, so that the newest

event is always first as shown in the table of Figure 9. Since a sensor does not differ from

an actuator in this data, the labels of the target actuators need to be given beforehand

to the learning system. In addition, if not a specific actuator but all possible actuators

shall be learned, they need to be discovered by searching for unique combinations of the

target actuator label and its respective value as visualized by Figure 10. Having the list

of target actuators and the event stream prepared, the system can start the learning

process for every actuator separately.

Starting with Section 4.2.1, the tasks in preprocessing are presented. Then in Section

4.2.2, the integration of ARM into the learning task is explained. After that, the tasks for

postprocessing the data are presented in Section 4.2.3. Followed by this, the integration

of CL into the learning task is described in Section 4.2.4. Finally, the concept for

validation of the learned decision rules is presented in Section 4.2.5.

4.2.1 Preprocessing

As described by Han et al. in [22], preprocessing encompasses tasks like cleaning, in-

tegrating, reducing and transforming the initial data to increase the data quality and

hence the output quality of algorithms. In this case, preprocessing encompasses the

tasks of segmenting the event stream and extracting an itemset from every sequence.
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Figure 11: The sequential segmentation for two actuators.

There are multiple ways to segment an event stream based on density [81], spatial

distance [42], time [43], a sliding window [46] or any other reasonable criteria. However,

since the objective is to discover strong association rules between sensors that are related

directly to the execution of an actuator, the pattern before such an event is the most

interesting part.

In addition, since the optimal target pattern length depends on unknown criteria like

the number of installed sensor and the relations between them, it is assumed that an

actuator could be executed at any time after its last execution. Therefor it is obvious to

segment the event stream on exactly these characteristics, so that every sequence ends in

an actuator event and starts after one. Figure 11 visualizes an exemplary segmentation

of the event stream for two different actuators, named A01 and A02. For a better

understanding, the timestamps and values are excluded from this visualization.

After a list of sequences is segmented from the event stream, an itemset is extracted from

each of these and stored in a separate list. Each item in such an itemset consists only

of the sensor or actuator label of its respective event. The reason for this is explained

in the following section.

4.2.2 Association Rule Mining

After preprocessing, from the list of itemsets - containing the sensor and actuator labels

similar to the sequences of Fig. 11 - a transaction database is created and given to an

ARM algorithm. Although the whole learning task could be realized using only ARM

- for example by merging device label and its value as one item - this approach would

move the meaning of relations from devices to device-value pairs, generating a vast

amount of highly specialized association rules instead of only several robust. To avoid
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M01 M02 -> TA01

C01 T01 -> TA01

C01 M01 M02 -> TA01

C01 M01 T01 -> TA01

C01 M01 M02 T01 -> TA01

Table 4: A sample output of the Association Rule Mining task.

such overfitting, it was decided to first discover relations based on the device labels only,

and then induce knowledge about the environmental state to them.

The concept of ARM was elaborated previously and will not be repeated in this section.

However it should be noted, that from the two algorithms that were elaborated in Section

3.3.1, FP-Growth outperforms Apriori in execution time [51] and should therefore be

preferred. In addition, ARM can output several association rules of different lengths

(see Fig.4). This is explicit wanted - instead of discovering only the most likeliest - to

explore a broader area of solutions.

Last but not least, as described in Section 3.3.1, association rules are generated for every

subset of a frequent pattern and thus leading to association rules for other actuators or

even sensors. Since these rules are not required in the current concept they are ignored

and handled during postprocessing.

4.2.3 Postprocessing

The output of ARM consists of a list containing various association rules. Postprocessing

iterates over this list applying the following operations: (1) Consequent actuator filtering

and the (2) extraction of positive and (3) negative examples.

As described previously, the list of association rules may contain rules for the wrong

target. By comparing the consequent of an association rule with the label of the target

actuator, irrelevant association rules are filtered out. A rule that passes this filter is a

rule candidate for the SH.

As mentioned before, positive and negative examples of the environmental state - when

an actuator was executed - are required for CL. Since the target decision rule will

only consider the related sensors and not the whole environmental state of the SH, just

a subset of it - covering every sensor or actuator in the antecedent of an association
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rule - is required as training example. Sequences that do not contain all sensors of the

respective association rule, will not be used for either positive or negative examples,

because the environmental state can not be differentiated completely.

While positive examples can be extracted from sequences that were segmented during

preprocessing, the extraction of negative examples is not unambiguous. This is because

a negative example can originate from two reasons: If a physical actuator was used

differently or if it was not used in the wrong context. Since it is - without further analysis

- not possible to reason the environmental state about missing executions, negative

examples are defined as positive examples for different settings of the same physical

actuator. However, this definition causes an uneven distribution among the positive and

negative examples if an actuator has more than two executable settings. Therefore all

negative examples are stored in a pool, from that - according to the positive set size - a

number of random examples is used as negative training examples.

As shown in Figure 9, the initial data consists of a table with three columns: Time,

Sensor and Value. In order to increase the feature space for the discovered decision

rules, it is considered to extract as much information as possible from the data. Although

there exist algorithms that discover important features automatically, it is preferred - for

evaluation purposes - to bias the system manually and thus guide the CL algorithm to

consider only specific conditions in the decision rule. Therefore the following features are

extracted manually from the timestamp: Month, Week, Weekday, Day, Hour, Minute

and Second.

The feature space for the CL approach is generated by merging the temporal with the

sensory features - that are defined by the antecedent of the respective association rule - as

visualized by Table 5. The last column classifies the example as positive or negative. The

columns vary, depending on the bias and current association rule. It should be noted,

that all numerical values are treated as nominal, because it can not be guaranteed that

every numerical value in a SH has a continuous range. For the same reason no features

are clustered, although the temporal extracted would be considerable candidates for

clustering.
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ID Weekday Hour Minute Second C01 M01 TA01

1 Monday 11 10 34 OPEN ON +

2 Monday 13 28 45 CLOSED ON -

3 Tuesday 10 58 22 OPEN OFF +

4 Tuesday 15 33 10 CLOSED ON -

Table 5: Four sample training examples on that Classification can be applied.

4.2.4 Classification

As for ARM, a specific approach for CL is not required. Using the generated training

examples as input, a classifier is trained that differentiates relevant and irrelevant envi-

ronmental states with respect to the initial association rule. If the CL approach itself

does not generate decision rules, they need to be extracted manually from the classifier.

However, all approaches that were introduced in Section 3.3.2, output decision rules

from the trained classifier.

This leads to the fact, that not only one decision rule is extracted from the classifier,

but rules for every possible classification. Since only rules for the target actuator are

wanted, a simple filter is applied at the output of the classifier to remove all rules from

negative classifications. In addition it should be noted that, due to missing publications

concerning the comparison of the presented approaches, a preference on one algorithm

will not be given.

After the classifier was trained, the output of the CL algorithm is a set of decision rules

of the form

IF Sensor A = Value THEN Actuator = Value

where the antecedent can embrace several conditions. It should be noted that - due to

the transformation of numerical to nominal values - only rules are generated that check

for equality.

The validation of the rules is described in the following section.
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4.2.5 Rule Validation

Since the proposed algorithm generates for every discovered association rule several

decision rules, a vast amount of different rules is learned. In order to support the

inhabitant, it is important to export only the most reliable rules into the SH system. As

described in the learning problem, the F1-score is used as performance measure for the

validated rules. To export only the best rules for an actuator, the following operations

are applied on all decision rules: (1) Determination of the performances, (2) application

of a given performance threshold and (3) final exportation of all passed rules. Based on

a parameter, the system will repeat the whole learning process several times in order to

increase the rule discovery rate.

As mentioned in Section 4.1, to determine the performance of a rule, its execution can

be seen as a binary classification problem. The data - that consists of unknown positive

and negative environmental states - needs to be classified into right and wrong. The

states can be retrieved in a similar way as the training examples by using the positive

and negative sequences from the target actuator and its different settings. By adding

the sequential events in order and applying the rule on the final environmental state, a

real SH scenario is emulated.

As for ARM and CL before, several different approaches of rule engines were introduced

in Section 3.2.4. From these systems, Easy Rules is preferred over Drools and OpenRules,

due to its lightweight properties and complete integration in Java, including the rules.

However, the concept is not bound to one rule-based system and the application can

be changed if transformation is adapted to support the rule-syntax of the target rule

engine. In order to execute the decision rule, it needs to be transformed into an engine

compatible format. Since the proposed algorithms require different formats of rules, this

task is postponed to the respective implementation of the rule engine.

Each time the rule fires, the current inserted state can be seen as positive whilst any-

thing else is classified as negative. The standard of truth, that is required to validate

such a binary classification task, is retrieved incidentally by generating the positive and

negative states. The discovered rules are not guaranteed to perform well, especially if

the environmental state or behavior of the inhabitant vary each execution. Therefore a

user defined performance threshold needs to be applied, that filters out bad performing

rules. Every rule that passes the filter will be exported to the SH.
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Attributes Rule 1 Rule 2

RuleID -713358601 894089539

Antecedent {C01=OPEN, M01=OFF} {C01=CLOSED, T01<=10.0}

Consequent {TA01=4.5} {TA01=20.0}

F1 0.77 0.73

Precision 0.63 0.58

Recall 0.99 0.99

Timestamp 2016-05-04T01:16:40.555 2016-05-05T16:30:22.966

Filepath \SmartHome\rules\-713358601.rule \SmartHome\rules\894089539.rule

Table 6: An exemplary performance table, filled with artificial rules.

As before mentioned, in order to retrieve the exported rules for later use, basic infor-

mations are captured in a table and stored onto the file system of the learning system.

These informations include a path to the location of the exported rule, a timestamp of

its generation, basic performance results, its antecedent and consequent naturally and

an identifier generated from their composed hash value. A structured overview of the

captured informations - including two artificial examples - is given in Table 6.

Before the system continues with the export of the rules, the learning process can be

repeated several times by a given parameter to increase the best performance of the

number of discovered rules. Although comprehensible, the algorithm will not stop in

between if a rule has been discovered that has passed the performance threshold, because

it is aimed to discover even better rules and thus will always retry the learning process

according to the given amount of trials. However, in order to discover new rules, the

datasets for training and evaluation needs to differ each time. Therefore, before the

repetition is started, both sets are cleared and mixed anew from the original dataset

containing all sequences of the segmented event stream.

After that, the internal rule needs to be transformed into a SH compatible format pro-

vided by an interface, in order to keep the core system distinct from the SH software.

During transformation it should be considered that the rule could check for environmen-

tal features like current time in hours or the month but the rule-based system of the

SH is not capable to evaluate such conditions. In order to propose a SH independent

system, a solution to this problem is not included in this concept. If such a situation

occurs, specialized workarounds need to be provided by the class that implements the

rule interface, that may remove the condition, adapt it or delete the whole rule.
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Finally the rule itself is serialized onto the file system by using the rule identifier as

filename, and accessible for both, the SH software and the proposed rule learning system.

4.3 Adaptation Mechanism

Until now, the system is capable of learning actuator management in a SH by observing

the habits of the inhabitants. However, the process is executed a single time and needs

to be triggered manually, and thus does not adapt on a changing environment what

contradicts to the definition of AmI. To apply adaptation on the rule base, the system

needs a mechanism to recognize that the learned knowledge is deprecated and thus new

rules should be discovered. This applies also to rules that may perform well for observed

data, but poorly under real conditions. In order to determine the performance of a rule

aside from the validation process, feedback is required that describes if a rule behaves

as wanted in the SH. In addition a mechanism is required to adapt the learned rules to

the changed environment.

In the following section, the concept of feedback retrieval is proposed. Afterwards,

the mechanism for rule adaptation is addressed in Section 4.3.2. Last but not least,

it should be noted that - due to the conceptual design of the system as an external

learning module - most of the following concepts need to be implemented in the SH

directly. This is applied particularly to functionalities that require an external system,

like the configuration of the learning frequency and its execution or the logging of past

rule decisions.

4.3.1 Feedback

Due to the unsteady environment of the system - originated from changes in the pe-

ripheral setup, persons or behavior - feedback is necessary to continuously evaluate the

learned knowledge under real conditions. Feedback can be provided mainly from two

sources: directly from the inhabitant or indirectly hidden in the data.

Direct feedback can be captured by a Graphical User Interface (GUI) that presents past

executions of actuators based on the generated rules (see Fig. 12), so that the inhabitant

can tag wrong decisions retrospectively. For this purpose, the GUI requires access to

a file where such executions are logged. As mentioned before, this task needs to be
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Figure 12: A conceptual Graphical User Interface for feedback.

realized by the logging facility of the SH. By adding a logger to the consequent of an

exported rule and log its identifier, every execution is captured in a logging file, then

through the GUI linked to the responsible rule and - if wanted - passed to the learning

system for replacement.

Regardless of direct feedback, adaptation can be realized by continuous frequent (e.g.

daily, weekly, monthly) learning. If the performance of a discovered rule deteriorates on

new data and falls below the predefined threshold, it can be replaced by a new one or

simply removed. Since it is not predictable at which interval the rule base should be

updated, the configuration of the frequency is left to the inhabitants.

Another more complex way to gather indirect feedback, is to keep track of the state

change from an actuator and relate it with wrong rules generated by the system. Al-

though an automatic collection of qualitative feedback is desirable at first, the associa-

tion of an actuator state change and its origin is no trivial question because it can occur

due to many reasons like the preferences of another person, simple passing of time, the

change of any other unobservable parameter or a real wrong decision. Since it cannot

be guaranteed that the change in the state of an actuator originated from the wrongness

of the rule, its usage will not be considered in this work.

The conception and implementation of the GUI depends strongly on the SH software and

its functionalities. From the solutions presented in Section 3.1, openHAB is preferred

over FHEM and Home Assistant due to its broad support of devices, simple extensibility

and main programming language, Java. The feedback that is given by the inhabitant

directly, triggers the rule adaptation mechanism immediately.
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4.3.2 Rule Adaptation

The previous section concerned about the feedback for adaptation and challenges orig-

inating by the analysis of hidden information in the event stream. While feedback is

used to evaluate the performance of the system, adaptation is necessary to improve it.

In machine learning two approaches for adaptation are common: Optimize the current

solution using optimization algorithm or simply forget what the system has learned and

train it on new data. While in some cases it is important to never forget the learned

knowledge - for example in a spam filter of an e-mail software - in this case it is preferred

because it allows re-usage of implemented functionalities, and avoids being trapped in

local minima by an optimization algorithm.

To guarantee a new solution for the next rule, the previous generated antecedent will be

excluded from solution space. Exclusion although necessary to guarantee new solutions

can be mischievous if the environment changes to a state where the previous solution

would fit best. Therefore excluded solutions will not be stored physically on the system

but will be used for the next generation of rules. This means that an excluded solution

can be discovered every second generation.

Summarizing the previous decisions, when rule adaptation is triggered by the SH, at

first all tagged rules are removed from the SH file system. Then for every deleted rule,

an actuator is created. Afterwards the list of target actuators and their excluded an-

tecedents are passed to the rule learning component to learn rules anew. The exclusions

are not stored physically on the file system and will be forgotten after the process has

terminated.
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Figure 13: The overview of the system’s context.

5 System Implementation

To proof the concept - that was proposed in the previous section - a prototype was

designed and applied to a SH platform, in order to learn rules for actuator management.

In this section its software architecture is presented, own implementations are differenti-

ated from used frameworks and tools, and the interface to communicate with the system

is described. An overview of the system’s context is provided in Figure 13.

As mentioned in Section 4.3.1, the preferred target SH platform is openHAB (in its

stable version 1.8.2). Three different interfaces for the learning system were developed

(see Fig. 13), in order to communicate with the SH software. Usually the sensory

data would be retrieved by a service from the SH. However, in the stated version of

openHAB, no convenient interface is provided to retrieve all data as a single event stream,

like it is stored by its persistence service. In addition, the HUI of openHAB provides

no convenient interface to display and manage adaptation of past executed rules. Due

to this, a GUI was developed as interface for the adaptation mechanism, that can be

embedded into a HTML page. And finally the learned rules are exported into the SH by

placing them in a specific folder location, missing the possibility to export them directly

into the rule base of the SH.

57



5 SYSTEM IMPLEMENTATION

All tools and libraries that were used or integrated into the developed system are intro-

duced in Section 5.1. Followed by this, basic informations and the implemented design

of the developed system, as well as settings are introduced in Section 5.2. After that,

the implemented modules - represented by subsections of Section 4.2 - are described in

Section 5.3. Although the implementation of the adaptation mechanism could not be re-

alized completely due to several security related issues, a prototypical GUI for feedback

is presented in Section 5.4.

5.1 Tools and Libraries

As highlighted in Sections 4.2.2 and 4.2.4, one major advantage of the proposed concept is

- in contrast to the elaborated state of the art - its independence for specific algorithms.

To proof the proposed concept and evaluate different compositions of ARM and CL

approaches, an own implementation of several algorithms was unfeasible. Therefore two

libraries - for ARM and CL - were integrated through interfaces to solve the respective

subtasks.

SPMF

The first library is the Sequential Pattern Mining Framework (SPMF) [16], a data-

mining library that contains algorithms for FPM, ARM and Sequential Pattern Mining.

The library, used in its current version v0.99e, is open source distributed under the GPL

v3 license and completely written in Java. Beside direct integration, the library can be

used via command line or a GUI. However, since the algorithms are not implemented

with a standardized interface, every algorithm has different starting parameters and may

use a different data input format. This characteristic and its consequences are described

in more detail in Section 5.3.

Weka

Since SPMF is only aimed for pattern mining, another library was required for the CL

task in the rule learning process. Again, to enable a broad variety of different algorithms,

Weka [5] was chosen for this task. The Waikato Environment for Knowledge Analysis

(Weka) is a workbench for machine learning containing a collection of various algorithms

for data mining tasks like CL, clustering, ARM or predictive modeling. It is continuously
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developed at the University of Waikato and open-source distributed under the GPL v3

license.

Although providing a standardized interface for ARM algorithms, the use of Weka as

library for both approaches was rejected due to two reasons: Compared to SPMF only

a few algorithms are implemented and - the main reason - the resulted rules for ARM

and CL are only accessible as text and not as objects. Due to this, for each algorithm

an interpreter is required, that takes the output string of the Weka algorithm, and

restores all rules that are described in it. The interface at which the Weka algorithms

are integrated is described in more detail in Section 5.3.

Other integrated software

As mentioned before, openHAB is missing a proper interface to load the event stream

directly via a service. Therefore, since openHAB is configured to persist the events in a

MySQL database, the official JDBC driver library for MySQL - called Connector/J - is

integrated into the rule learning system to load the persisted data.

As stated in Section 4.2.5 and introduced in Section 3.2.4, the rule engine Easy Rules

is integrated for validation and performance evaluation of the generated rules. The rule

interpreter and integration of Easy Rules is described in more detail in Section 5.3.

To integrate the developed system into openHAB, the SH platform needs to be config-

ured respectively. This task is supported by the openHAB Designer, an Eclipse RPC

(Rich Client Platform) application that provides a full IDE including syntax checking,

highlighting and content assistance of openHAB’s runtime configuration files [62].

5.2 General Implementation of the System

As stated previously, the system should be designed to extend the functionalities of a

SH not autonomously as separate service, but frequently as executable learning module.

In addition, to develop platform independent the system was implemented in the pro-

gramming language Java. Therefore the developed system resulted in a runnable Java

Archive (JAR) file, that can be executed via command line and placed in the same folder

as the SH.
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To parametrize almost any functionality of the learning system, it was decided to utilize

both: a configuration file and the command line of the operating system. The configu-

ration file contains settings for the learning process, like the labels of target actuators,

settings for ARM or CL, the database containing the event stream, the integrated rule

engine and many more. A structured overview of all parameters in the configuration

file, is given in Table 11 in the appendix. It should be noted, that the configuration file

needs to be placed in the same folder as the JAR component.

Settings considering the function of the system, its targets and the dates that limit the

retrieved data, are given directly to the system via command line parameters. The

following functionalities are provided by the software in order to: learn, update, anno-

tate, replace, remove or validate rules. These functionalities can be divided into learning

(learn, update, replace) and managing (annotate, validate, remove) tasks. The difference

between the proposed learning functions is not the learning process but the operations

applied before or after it. While the function learn simply learns a new rule, update re-

places a rule if a different one for the same virtual actuator is discovered that performed

better than the current solution, and replace does almost the same with the slight dif-

ference that the discovered rule does not need to perform better than the current one

but needs to surpass the performance threshold. Aside from learning, the managing

functions should be self-explanatory. The annotate function tags a rule as wrong, which

is either immediately or during the next update process replaced. The validate function

validates a rule based on new data and updates the rule table according to the results

and last but not least the remove function removes a rule from the SH and the rule table.

With each execution only one functionality can be addressed by using the mandatory

parameter -mode [value].

In order to apply the functionalities on a target, the mandatory parameter -target [value]

requires either all, the label of an actuator or the identifier of an existing rule. In

addition, an optional argument -value [value] can be passed to the system in order to

focus the learning process to a specific virtual actuator. To limit the time frame of the

data used for learning, two optional parameters - named -from and -until - can be passed

to the system in order to limit the time frame from which data is retrieved. Last but not

least, as described in Section 4.2.5, the system is capable to retry the learning approach

several times on a different data basis in order to increase the rule discovery rate, and

maybe the performance of the best rule using the optional parameter -trials.
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Figure 14: A class diagram of the structure from the internal event stream.

The following command line example would execute a learning process for the actuator

with the label TA01 and its target value of 4.5:

java -jar LearningSystem.jar -mode learn -target TA01 -value 4.5 -trials 3

5.3 Implementation of the Learning Process

After some general informations about the developed system were introduced, the im-

plementation of the rule learning functionality is presented in this section. Since the

flow of the data was already defined in Section 4.2 the focus in this section is moved to

the internal data structures.

Starting with preparations of the initial situation, the sensory data needs to be imported

from a predefined database. In order to manage the resulted list of events, two classes

were developed that represent a single event or a stream of events (see Fig. 14). As

required from the concept, each Event class consists of a timestamp, a source and a

value field. The class EventStream contains - beside the original persisted stream - one

list for every column to ease repetitive processing in later steps.

Continuing with the preparations, the list of physical actuators is given to the system

either manually or through predefined labels in the configuration file. As mentioned

in the conceptual description, virtual actuators are determined by searching for unique

values of actuator labels in the database.

To avoid preprocessing every virtual actuator separately, a Java Map object, consisting

of virtual actuators as keys and the segmented sequences as values, is created and filled

completely during one processing of the event stream. The list of segmented sequences is

split into distinct sets for training and evaluation according to a configuration parameter.

It should be noted that actuators, whose number of segmented sequences is below a given

threshold, will be removed from the learning objective to avoid the discovery of useless
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Figure 15: A class diagram showing the integration of Association Rule Mining algo-
rithms.

rules. After the map is filled with all target actuators and their respective training and

evaluation set, learning is performed for every virtual actuator separately.

According to the elaborated concept, behavior rule learning starts with ARM. The

integration of SPMF into the learning system is presented in Figure 15. The specific

ARM algorithm is instantiated during runtime and is defined in the aforementioned

configuration file. Due to missing standardized interfaces in SPMF, each algorithm is

integrated as a specialization of the AssociationRuleMining class. However, if a complete

different library needs to be integrated, it is sufficient if the algorithms implements the

ARM interface. Since the integrated Apriori and FP-Growth require both a transaction

database, the list of EventStream objects is written in a CSV-format to the filesystem

and then loaded via SPMF intern functions into a transaction database on that the

algorithm is applied with preloaded configurations. Since the implemented algorithms

of SPMF operate mostly on sequences of integers, a mapper is required that maps the

specific sensor label to a unique integer value. This mapping is reverted during retrieval

of the discovered association rules, and every resulted list of associated sensor labels are

stored in an internal AssociationRule object.
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Figure 16: A class diagram of the data structure at which Classification is applied.

Following the concept, the output of ARM is a list of association rules. In order to

apply CL on examples for every association rule, a HypothesesSpace object is generated

first, that defines the feature space for the CL algorithm. Then training examples are

generated using the Attributes of the HypothesesSpace (see Fig. 16), to extract the

correct data from the sequences. A training example can be visualized as a row of Table

5 in Section 4.2.4. It is implemented as a list of Attribute objects (columns of the table)

where the elements of the list are predefined by the HypothesesSpace object (the table

header) and a target VirtualActor object (target class) at which the example is classified

to. An Attribute object contains a label (the column header) and a value (the content

of a table cell).

Like ARM, the algorithm for CL is instantiated during runtime and defined by the

configuration file. However as mentioned before, the algorithms in the Weka library

do not provide standardized accessibility to their respective classifier. Therefore each

algorithm used in Weka requires a defined interpreter class, that transforms the resulted

classifications into a set of Rule objects. Custom CL algorithms can be implemented

using the classifier interface. The class structure of the integrated CL algorithms is

visualized in Figure 17. The Rule object differs in such way from the AssociationRule

object, that its antecedent and consequent consists of Condition objects. These objects

represent an abstract triple, each consisting of the sensor label, an operator - like “>”,“<”

and = - and a value.

As described in Section 4.2.5, the performance of each rule is determined by an validation

process, where it is applied on unknown SH emulated data by an interchangeable rule
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Figure 17: A class diagram showing the integration of Classification algorithms.

engine which is instantiated during runtime. The data is represented by a Context object

that manages a set of Sensor objects and a Time object. While the sensory environment

in a SH is emulated by the set of Sensor objects, the current time is represented by

the Time object. Having the emulated data structure initialized, the events of every

EventStream object are processed in ascending time order. If the sensor of an event

is part of the rule’s antecedent, its label and value are extracted and added to a set of

unique Sensor objects. After the whole event stream is processed, this very set of sensors

contains the state of every - rule relevant - sensor right before an actuator is executed.

A visualization of this description is given through the class diagram in Figure 18.

While the input data for rule validation is defined, the internal rules are not suited for

execution by a rule engine. To load the internal rules into the knowledge base of a rule

engine, a parser needs to transform the conditions of the internal Rule object into a rule

engine compatible format. The parser for Easy Rules is implemented as a POJO. It

takes the conditions directly into its object and returns itself as rule.

Using the emulated data for validation, a rule engine executes the parsed rule on positive

and negative environmental states. By knowing the respective situations in that a rule
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Figure 18: A class diagram of the emulated data structure used for validation.

should fire, a ConfusionMatrix object is filled with the binary classification results (see

Section 4.1). Based on this, a Performance object is generated that contains the F1-

score of the rule. The score including several other informations like the timestamp, rule

identifier and even the whole rule itself are stored into an Entry object. A class diagram

embracing all these previous descriptions of the validation data structure, is given in

Figure 19.

If the performance of a rule passed the predefined threshold, its internal Rule object

will be parsed by another rule interpreter for the target SH platform and basic infor-

mations about it are stored according to the concept. The rule table is implemented

as a RuleTable object. The class can be seen as a mask for a Java Property object,

using predefined labels as keys and the data of the Entry objects as values. In addition,

the RuleTable object can not only write Entry objects to a file, but also restore them

from it and thus load exported rules back into the learning system. Before the program

terminates, the RuleTable object and all passed SH rules are serialized to predefined

locations.

5.4 Implementation of the Adaptation Mechanism

To adapt the discovered rules, two mechanisms - described in Section 4.3 - are imple-

mented. The first mechanism - continuous update of the rule base - is implemented
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Figure 19: A class diagram of the internal validated data structure.

using openHAB’s own configuration possibilities. The second mechanism - update on

explicit feedback - is implemented as Java applet and embedded into the HUI of the SH.

Since the learning system does not run autonomously, a trigger is needed that commands

it to update the current rule base. This trigger needs to be realized by an autonomous

configurable system for which the SH software is predestined. By using the internal

rule engine of openHAB, a timer was realized that executes the learning system and

resets itself according to some point in the future. As mentioned previously, it is not

predictable at which interval the system needs to update its rule base. Therefore its

configuration is provided to the inhabitant using the HUI of the SH. In addition, the

time frame of used data to update the rule base can be configured by this interface too.
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Figure 20: The implemented Graphical User Interface for feedback.

Until now the SH system uses the functionalities of the learning system to update the

discovered rule base frequently. However, this does not include single rules or the feed-

back of the inhabitants. To gather direct feedback, a Java applet was developed that

presents past actuator executions of the generated rules and the possibility to annotate,

update, replace or remove the respective rule behind the execution. A screenshot of the

prototypical GUI is given in Figure 20. Since the applet needs to know where the rule

log file is located - which is defined in the configuration file - it should be placed in the

same folder as the learning system.

Although running in the IDE, it should be noted that the applet could not be embedded

successfully into the HUI of the SH. The main reason for this is that in the recent

history, several critical security issues were discovered in Java and due to is, almost

any webbrowser is blocking the Java applet by default [48]. Even a self certified applet

was blocked, and the option to disable these security checks was removed from the Java

console since Java 7.
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6 Evaluation

In order to proof the concept, the developed prototype was evaluated under varying

settings. In this section, the evaluation is presented starting in Section 6.1, where the

experimental setup is introduced including a description of the apartment, the installed

sensors and actuators, used computers and the general configuration of the SH. To

determine a good configuration of learning approaches for the proposed system, the

algorithms - introduced in Section 3.3 - were tested under varying parameters. The

results of this competition are described in Section 6.2. Using the results of the previous

competition, the evaluation of the learning system, its configuration, objectives and

results are discussed in Section 6.3.

6.1 Experimental Setup

Evaluation is applied on data from a real world experiment. In this experiment, a

common apartment was is enriched with devices and computers to model a common

SH. The objective of the experiment was to learn behavior rules that resembles the

inhabitants actuator management. After a failed installation of light actuators due to

the old circuit in the building, a heating thermostat was chosen as target actuator for its

simple installation procedure. Upon request of the inhabitants, it was revealed that the

only frequently used radiator in the apartment was in the toilet. Hence this experiment

is focused to learn behavior rules for the heating management in the restroom.

In this section basic informations about the apartment, installed sensors and actuators,

configurations of the CCU and further hard- or software installations are described in

order to reproduce the experiment. During the experiment the apartment was inhabited

irregularly by one to three people. They were told to behave naturally and use the

actuator in their own behavioral pattern.

Beside this work, a parallel thesis from Peter Manheller [61] aimed to detect anomalies

in human behavior using the data generated by the SH. For differentiation it should be

noted that the toilet setup including the heating actuator is detached from the rest of

the apartment, because it was installed few months after Manheller’s start. While this

work relied on the toilet setup as basis for development, Manheller’s project used data
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Figure 21: A rough outline of the apartment used for the experiment.

from the rest of the apartment. Nevertheless, because data of the whole apartment were

used for evaluation, the sensory setup of both projects will be considered in this section.

6.1.1 Apartment Description

The SH experiment was conducted in a two-room-apartment of an old building with no

previous installed SH devices. The distribution of rooms in the apartment resembles a

star topology - with the floor as center of the apartment - as shown by a rough outline

of the apartment in Figure 21. A more detailed outline of the apartment including the

approximate positions of every sensor is presented in Figure 33 in the appendix. Due to

readability, the toilet is outlined separately in Figure 32 in the appendix. By entering

the floor through the front door, the inhabitants can reach any room, while at the same

time, needs to pass the floor when they move between the rooms.

The Balcony is the only part of the apartment that has no sensors installed because it

is shared with a neighboring apartment that is excluded from the experiment.

6.1.2 Sensor and Actuator Setup

Due to the age of the building, privacy considerations and the available hardware, only a

few selected devices could be installed in the apartment. To avoid (de-)installation diffi-

culties of the devices, one requirement was to rely only on external attached sensors and

actuators. To bridge the gap between installation simplicity and usability for behavior

observation, most attention was given to motion, contact and temperature sensors.
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Type Device Amount LV* BD* FL* KI* BT* WC*

Motion HM-Sec-MDIR-2 6 1 1 1 1 1 1

Contact HM-Sec-SC-2 5 - - 1 2 1 1

Temperature HM-WDS40-TH-I-2 1 - - - - - 1

Heating Control HM-CC-RT-DN 1 - - - - - 1

CCU HomeMatic CCU2 1 1 - - - - -

Table 7: An overview of all installed devices in the Smart Home.
* LV = Living room, BD = Bedroom, FL = Floor, KI = Kitchen, BT = Bathroom and WC =
Toilette.

In addition, to simplify the installation procedure, all devices are from the same manu-

facturer and applied to a CCU. Due to availability, HomeMatic devices were used and

connected to HomeMatic’s CCU2. The CCU2 although not a sensor or actuator, is used

as central access point for the openHAB software. An overview of the installed devices

is given in Table 7.

Motion Sensors

In order to detect presence in the whole apartment, each room was enriched with ex-

actly one HM-Sec-MDIR-2 motion sensor, that observes most of the room space that

connects to the floor. Exception is made for the bedroom. Considering the privacy of

the inhabitants, the view angle of the motion sensor in the bedroom was modified to see

only the area directly connected to the door. In general the motion sensors were placed

in such way, that only the own room can be observed in order to produce independent

sensor event. However exception in this case in made for the floor. Due to the apartment

structure, regardless how the motion sensor is placed, it can always look into a least one

other room. In this experiment the sensor was placed between the living room and the

bedroom which enables the motion sensor to detect presence in the kitchen. This needs

to be considered when the independence of events in data is required.

Beside motion, the sensor is capable to capture the brightness of its environment. How-

ever the sensor in the toilet is the only one that used this functionality.

Contact Sensors

The usage of contact sensors was limited to the available devices. Therefore they were

applied on objects that state a clear semantic usage. The sensor in the floor was attached

to the front door, which indicates that a person left or entered the apartment. The two
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sensors in the kitchen were installed at the refrigerator door and the cutlery drawer to

indicate when an inhabitant is preparing or eating a meal. The sensor in bathroom

was attached to its door, because of the inhabitants’ habit to close it when they take a

shower or enjoy a bath. Finally the sensor in the toilet was installed at the window in

order to observe the behavior concerning ventilation of the toilet.

Temperature Sensors

In order to observe the managed domestic feature as stated in Section 4.1, the sensor

HM-WDS40-TH-I-2 was placed at the toilet near the window to update frequently the

current temperature and humidity of the room. Beside the external device, an additional

temperature sensor - integrated into the heating actuator - is used to observe the current

temperature. To ensure an accurate observation both sensors are placed in the opposite

corner of the room.

Heating Actuator

The HM-CC-RT-DN radiator thermostat is installed at the heating in the toilet to ob-

serve the behavior of the inhabitant concerning the heating management. Although the

device has many functionalities, it was only used as a manual heating controller in order

to observe casual behavior of the inhabitants. Beside the aforementioned temperature,

the device observes the state heating valve and the current heating mode too.

6.1.3 CCU Configuration

As mentioned before, the SH software and therefore the real CCU of the SH is openHAB.

However, the common approach for openHAB to communicate with eQ3 devices is over

the HomeMatic CCU. Due to this, the CCU of HomeMatic is used in this experiment

only as an access point that operates transparently by communicating only data between

openHAB and the installed sensors and actuators.

In order to the learn casual behavior of an inhabitant in a common home, no automatisms

- like rules or scripts - were used for the actuator during the experiment. In addition,

the remote access for the heating controller was prevented, leaving the only possibility

to execute the actuator manually. Last but not least, openHAB was configured to store

an Item on a local MySQL database each time its value changed.
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6.1.4 Further Hard- and Software installations

The aforementioned openHAB software was installed on a Raspberry Pi2, connected over

Ethernet to the HomeMatic CCU2. However, in order to not disturb the SH experiment,

a different computer - with 4Gb RAM and an Intel Core i3-2120 CPU - was used for

evaluation. In addition, to compare performances on both setups, two MySQL databases

were set up locally, containing data from either one of the two parallel experiments.

6.1.5 The Smart Home Data

Summarizing the previous setup as datasets, Manheller’s data consists of five motion and

four contact sensors, that were installed in every room except the toilet. Therefore only

binary values were captured. The dataset contains continuous sensor data from several

months. As mentioned before, the dataset does not contain completely independent

sensor events which should be considered when its used. This dataset is in the following

referred to as apartment dataset.

Since this experiment started later, another dataset was created consisting of data from

the four devices, that were installed at the restroom. From these devices, nine different

sensors captured data about the environmental state of the toilet continuously for two

months. The dataset consists of observations from a motion, a brightness, a contact,

a humidity, a valve state and two temperature sensors. In addition, it contains the

actuator mode and the target temperature from the heating controller. This dataset is

in the following referred to as restroom dataset.

Both datasets are published open source and available at the MCLab [57] of the Bonn-

Rhein-Sieg University of Applied Sciences.

6.2 Screening of Algorithms

Since the composition of ARM and CL covers many different algorithms, a good working

combination of the integrated approaches needs to be screened in order to evaluate a

functional learning system. In this section, the evaluation of the two introduced ARM

algorithms Apriori and FP-Growth of the SPMF library, and the three CL algorithms

PART, PRISM and Ridor of the Weka library, are discussed. For each RI paradigm,
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the best is chosen in order to evaluate the learning behavior of the implemented system.

The respective best approach is determined by the evaluation criteria in the following

section.

6.2.1 The Evaluation Criteria

The most important criteria is the resulted performance, looked from three angels: the

performance of the best rule, the average performance of all learned rules and the per-

formance of the worst rule that was discovered during one execution. This criteria is

evaluated for both: ARM and CL approaches.

Another important aspect for evaluation is the number of discovered rules. Regardless

of the best, average or worst rule, a good algorithm should consider not too few or too

many algorithms, because it could miss a good solution or waste resources in validating

meaningless rules. As the previous criteria, this evaluation is applied on ARM and CL

algorithms.

Last but not least, since the ARM algorithms from the SPMF library require the con-

figuration of support and confidence, several settings were evaluated experimentally in

order to determine the most promising combination of settings. This evaluation was

not applied to the CL algorithms of the Weka library due to two reasons: First the

library provides default values for every algorithm avoiding the necessity to configure

them. Second and more important, the list of parameters for a classifier can have much

more than two features, which increases the complexity of finding the optimal setting

exponentially. Since the target of this screening is to discover a good composition of

algorithms and not the best, solving this optimization problem would be out of scope

for this thesis.

6.2.2 Evaluation of Apriori and FP-Growth

In Figure 22, the results of FP-Growth are confronted with Apriori’s using a boxplot.

Throughout all runs, the performance of the rules has varied through the whole spectrum

from zero to one, which causes can not be derived directly. However, the important value

which should be considered is the median, represented as a thicker horizontal line. The

worst results aside, FP-Growth has outperformed Apriori in best and average results,
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Figure 22: A comparison of performances with Apriori and FP-Growth.

which means that the F1-Measure was in general higher when using FP-Growth as ARM

approach than Apriori. These results are surprising, because it was assumed that both

algorithms would discover nearly the same association rules which should then again

lead to similar results. The huge difference between the results of these two algorithms

is visualized in Figure 23.

Considering the amount of discovered association rules as shown in Figure 23a, FP-

Growth has generated almost ten times more association rules than Apriori. Although

many of them were filtered out during postprocessing, the superior amount of association

rules, resulted in general to more decision rules which is confirmed by Figure 23b. The

more rules are generated from the data, the higher the possibility is that one good rule

is discovered. In addition, the higher number of discoveries influences the median which

clears the changed difference between best and average results. Nevertheless, this does

not explain the still striking difference of the average performances between Apriori and

FP-Growth fully.

Elaborating the results further led the indication, that FP-Growth may be more robust

against changes in parameter than Apriori. This assumption is affirmed by Figure 24a,

in which both ARM approaches are confronted under different Support configurations.

While FP-Growth shows similar results under different settings, the performance with

Apriori drops with higher Support configuration drastically. This behavior can be ex-

plained through the Apriori Property introduced in Section 3.3.1 which states that all
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(a) A comparison of discovered Association
Rules using Apriori and FP-Growth.

(b) A comparison of discovered Decision
Rules using Apriori and FP-Growth.

Figure 23: The confrontation of Apriori and FP-Growth in terms of discovered rules.

subsets of a frequent itemsets, need to be frequent too. The result of this constraint is

that high support parameter will filter out potentially good frequent pattern very early

resulting in lesser association rules and thus - in general - to an inferior performance.

Another surprising behavior was observed at the FP-Growth. Considering the definition

and functionality of the Confidence parameter, it should have increased the performance

of the discovered rules for both ARM approaches. However Figure 24b reveals that

compared to Apriori, the Confidence parameter had no significant influence on the per-

formance of the generated rules. Since both approaches generate association rules from

frequent itemsets at the same way, a difference in implementation is not responsible for

this behavior. One possible reason would be that so many association rules were gen-

erated by FP-Growth with every configuration, that good and bad rules were balanced

and no real improvement could be reached. However the true reason behind this needs

to be evaluated in future work, using a more complex learning problem.

Summarizing the comparison of Apriori and FP-Growth, the first one is outperformed

by the second in terms of performance and robustness. In addition the most promising

configuration of the Support and Confidence parameter is for both 0.25. Therefore the

evaluation of the learning system will be configured using FP-Growth with the afore-

mentioned settings. More information regarding the performance of every configuration

is given in Table 10 in the appendix.

76



6 EVALUATION

(a) The influence of the Support parameter
in Apriori and FP-Growth.

(b) The influence of the Confidence parame-
ter in Apriori and FP-Growth.

Figure 24: The influence of Support and Confidence at the performance of discovered
rules.

6.2.3 Evaluation of PART, PRISM and Ridor

The evaluation of the Classifier is not straight forward compared to ARM. As visualized

in Figure 25a the least performance is clearly reached by Ridor as Classifier, where even

the best rules reached only a median of zero. From there on bargaining starts. While

PART clearly outperforms the PRISM classifier in terms of average performance, only

outliers of PRISM reach worser results that the perfect score of 1.0 where PART reaches

in more than 3 of 4 runs not a perfect score. The causes of these results can not be

traced completely, because both algorithms implement a complete different approach.

As for ARM, one possible cause for the change in these results can be derived when

the number of discovered rules is considered as visualized in Figure 25b. As mentioned

in Section 4.2.4, for every association rule, several decision rules are extracted from the

classifier according to the resulted classifications. However, PRISM generates so many

decision rules, that the set of rules contain almost every time an antecedent that suits

the evaluation data perfectly. While the best rule strikes the statistic, the average takes

all failures into account which are also many and thus resulting in a much lower median

than PART.

Considering the amount of rules to validate and the average performance, PART is

superior to PRISM and Ridor because it discovers - in general - the least rules without

loosing much performance. As mentioned before the parameter for the CL algorithms

are not evaluated due to the exponentially increase in complexity and thus evaluation

duration. In addition the results using default parameter by Weka may not be optimized,
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(a) A comparison of the performance results
using PART, PRISM and Ridor.

(b) A comparison of generated amount of de-
cision rules using PART, PRISM and Ridor.

Figure 25: The Comparison of the PART, PRISM and Ridor algorithms with respect
to performances and discovered rules.

but sufficient to discover good decision rules. Therefore the settings for the evaluation

of the learning system will be configured to use the CL algorithm PART, with its default

parameter provided by Weka.

6.2.4 Final Annotation

The implemented algorithms for both ARM and CL - except for Ridor - can solve

the learning problem magnificent. The results are comparable and a best setting of

algorithms and parameters is emerged. However for both, ARM and CL the sheer

amount of discovered association rules and decision rules influences the performance

of the best rules which makes especially this category very biased. Therefore, this

comparisons can not be seen as a general performance evaluation of FP-Growth and

Apriori - or PART, PRISM and Ridor - but a context specific experimental screening of

selected ARM and CL algorithms.

The results of this evaluation should not be used for reference, and their only purpose

was to emerge a good combination and configuration of algorithms at which the behavior

of the learning system will be evaluated and discussed in the following section.

6.3 Behavior Learning System - Evaluation

In this section, the evaluation of the developed learning system is presented. In order to

determine the limits of the system based on statistical confirmed results, it was executed
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General Value Algorithmic Value

actors 1 ARM FP-Growth

actors.0 R_TA01 arm.support 0.25

performance F-Measure arm.confidence 0.25

performance.min 0 cla PART

minsetnum 2 cla.param default

engine Easy Rules

Table 8: Some static settings of learning related parameters for evaluation.

under various different configurations, ten times in each case. In Section 6.3.1, the basic

settings and varying parameters are described, under that the system was executed. Af-

ter knowing the configuration, the objectives of the evaluation are introduced in Section

6.3.2. Finally, the results are discussed with respect to every objective, in Section 6.3.3.

6.3.1 Configuration and Scenarios

As mentioned in Section 5.2, almost every function of the developed system is parametrized,

resulting in a huge variation of settings. To simplify the evaluation, only the few selected

parameters of Table 8 were configured static. A short description of every parameter is

given in Table 11 in the appendix. In addition to these static settings, several parameters

where changed during execution:

• -until: Since behavior could change over time due to changing outdoor tempera-

tures, this parameter seemed necessary in order to evaluate the system at different

seasons. It was configured at the middle and the end of April and May resulting

in the four configurations: 2016-04-15, 2016-04-30, 2016-05-15 and 2016-05-31.

• -days: This parameter defines the time frame between the earliest and latest

database entry in days, that will be used for learning. It is used to derive the

-from parameter for the learning system by using the given -until parameter. This

parameter was configured as 14, 28 and 56 days respectively during evaluation.

• -cvsplit: As mentioned in Section 5.2, the -cvsplit parameter was labeled after

its functionality to split a given dataset into the respective sets for training and

evaluation and thus simulating cross-validation. During evaluation this parameter

was configured as 0.5 and 0.75 in order to evaluate the influence of cross-validation

on the results.
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• -trials: As described in Table 11, this parameter defines the attempts of the

system to learn rules. Redundant rules will not be added to the results, but all

other new rules that passes the threshold will be exported. For evaluation purpose

this parameter was configured at 1 and 3 attempts.

In order to evaluate the learning system in a real situation, two different SH scenarios

were created under which the system was evaluated using the aforementioned static and

variable parameters.

The first scenario resembles a SH - optimized for learning - in which all sensors are

somehow related to an actuator. For this, the restroom dataset is used. In this dataset

the target temperature from the sensor - labeled as R_TA01 - is used as actuator.

In contrast, the second scenario extends the first by using all sensor data from the SH,

regardless of localization or relation to the actuator or other sensors. This scenario

resembles more a common SH in which many sensors can be completely unrelated to an

actuator. For this the aforementioned apartment dataset is merged with the restroom

dataset.

In order to easily switch the scenario during evaluation, two MySQL databases were set

up which contained each one of those datasets.

6.3.2 Evaluation Objectives

Compared to the previous screening, this evaluation does not primary aim to evaluate

the performance of the discovered rules. Since the learning system is designed to extend

a SH framework, this evaluation aims to emerge circumstances under that the system

can learn rules and under which it struggles to find any rules.

Therefore, in order to guide the evaluation, several questions were formalized that can

be separated into two categories: learning and dataset focused. As named in the first

category, the evaluation is focused on the learning behavior of the proposed system. Its

main purpose is to highlight difficulties, unexpected behavior or advantages in learning

that emerged from the underlying concept. Although evaluation of the learning behavior

is also considered in the second category, those question are focused with subject to the
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used dataset and conclusions originating from this evaluation should be comprehended

carefully.

The following five questions are focused on the learning behavior:

1. Is there a significant difference between an optimized and a common SH in rule

discovery rate and performance? With this question, the noise robustness of the

proposed system will be evaluated.

2. How does the number of available sequences influence the rule discovery rate and

performance? Since it is not assumed that the system will learn with few examples

very good rules, in this question a convergence point at which the system can learn

useful rules will be determined.

3. Does the trials parameter of the system influence the rule discovery rate and

performance significant? With this question, the benefit of the trials parameter

will be evaluated.

4. Does the system learned all virtual actuators equally well? Two objectives led to

this question: First the distribution of usage for the installed actuator is considered

and second its influence on the learning system is evaluated.

5. How does an increase of training data while decrease in evaluation data influence

the rule discovery rate or performance? Since the data collected during the ex-

periment would not be considered as Big Data, this question aims to evaluate the

learning behavior of the system, if more data would be available for training at

the expense of evaluation.

In addition three questions will be evaluated that are focused on the dataset:

6. Are there significant differences in learning the actuator using data from April

compared to data from May? Since the experiment was performed for a longer

period of time, one of the most interesting results is to evaluate, if the learning

behavior of the system - what it learned exactly - changed with the behavior of

the inhabitants.
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7. How does the amount of days - used from the dataset - influence the performance

and discovery rate and based on this, how many days should be used for learning

in general? Background for this question is, that an approximate lead time is

determined that the system requires to learn something valuable. Compared to the

previous learning time evaluation, in this question the behavior of the inhabitants

is considered additionally in order to evaluate the learning system under a real use

case.

8. How good are the rules really? Can they be used directly in a SH? Since until now

the rules were evaluated only on data basis, in these final two question the real

value of the learned rules is evaluated. In order to answer them, the top ten most

discovered rules are evaluated manually with consideration of their application in

a common SH.

6.3.3 Results and Discussion

Using all configurations and repetitions, the learning system was executed in total 1920

times and exported during these runs 20160 rules. Within each run, several statistical

values were captured like performance of the best rule or number of discovered rules for

a virtual actuator, and stored into a single dataset. This dataset is unpublished but

open source available on request.

Using all data available, and without any expectation of the results, the median of the

best performance for all rules was surprisingly zero. After further analysis, one of the

first results from this evaluation was, that a specific amount of sequences is required

for the learning system in order to not only to learn rules, but also to discover well

performing ones. However, the problem did not originated only from a small dataset.

The cause of this result can be understood, if the distribution of the dataset sizes is

considered as visualized in Figure 26. The amount of sequences in a dataset is the result

of the segmentation approach, that generates a sequence for each occurrence of the

virtual actuator in the event stream. However, if only few events of the target actuator

are stored in the database, the resulting dataset for training would also contain only a

few sequences. Imagine the management of a heating actuator that ranges from 4.5 to

30.0◦C in steps of 0.5◦C. It has a broad range of 31 possible states resulting in the same
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Figure 26: The frequency distribution of the dataset sizes used for learning.

amount of different virtual actuators for that rules could be learned by the system. The

equal distributed usage of all states will most probably never happen, since the room

temperature depends also on various other parameters, like opened windows or outdoor

temperature or the seasons. In addition, these states can be set unintentional, due

to a change of the aforementioned parameters or any other reason, resulting in many

virtual actuators that were executed only a few times during the whole experiment.

This reasoning was confirmed by further analysis of the data and consultation of the

inhabitants. One solution that may reduce the problem, is to cluster the configured

temperatures into fewer groups like {Low, Medium, High}. However, this is not always

necessary as shown later in this section.

Evaluation focused on the Learning Behavior

Getting back to the topic, very small datasets were biasing the evaluation, because the

percentage of datasets containing 1 to 3 sequences was already 80.15% of all datasets.

In order to remove them from the results, a definition of small is required. Considering

the second question, the solution to this problem is directly related to answering the

question. Therefore, the median for the rule discovery rate (27a) and the best and

average performances of discovered rules (27b) - with the respect to the dataset size -

were calculated as visualized by Figure 27. The correlation between small datasets and

the learning behavior is striking. Not only does it confirm a dataset of approximate 15

sequences is required for the system in order to discover good results, it also reveals that

the minimum size of the dataset should not fall below 10 and that a convergence occurs

after 15 sequences.
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(a) The influence of the dataset size on the
rule discovery rate.

(b) The influence of the dataset size on the
performance of the rules.

Figure 27: The correlations between the dataset size and the learning behavior.

As a result, the data for evaluation was adjusted by removing all results based on datasets

with less than 10 sequences. From the previously mentioned 20160 rules, merely 2880

were left, that were used for the following evaluation.

One of the most interesting question is the first, because it addresses the usability of

the proposed system in a common SH. Due to the segmentation concept, the system is

expected to be robust against noise and assumed to perform similar to the optimized

scenario. Considering the performance of the discovered rules in Figure 28b, there exist

- as expected - no significant difference between an optimized and a common SH.

However, Figure 28a reveals a significant difference in the number of discovered rules. At

first this seems reasonable because using more sensors, increases the number of associa-

tion rules and thus the discovered rules in total. Nevertheless, a difference of this scale

was not expected, because only nine sensors were added to the dataset. This can turn

into a problem if the SH encompasses many sensors but the computational resources are

limited. One solution for this problem, would be to filter out association rules between

sensors, who are not really related to each other, but in the data appearing so. How-

ever, this would require prior knowledge about the SH setup, which needs to be given

manually or determined from the data first.

Continuing with the third question, it was expected that an increase in learning attempts

will also influence the rule discovery rate and the general performance of the best rules

positively, since the learning system has more chances to discover rules on different

training and evaluation sets. However, first results stated that there were no differences

between one or three attempts, leading to the reasons that the learning problem may be
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(a) A Boxplot of the discovered rules for both
scenarios.

(b) A Boxplot of the performance results for
both scenarios.

Figure 28: A comparison of results using optimized and common datasets.

too simple, so that the system discovers all possible rules in only one run. Reconsidering

Figure 23b of Section 6.2 and the amount of association rules generated by FP-Growth,

this may be a reason. However, rethinking the circumstances of the evaluation - and

that every configuration ran ten times each - the cause of this may be statistics itself.

The fact that every configuration was executed multiple times, is - when evaluating

the resulted data - the same as configuring the trials parameter to 10 or 30 attempts.

Nevertheless a separate analysis of every run still led to similar results, leaving the first

reason - although unexpected - as most probable cause. For confirmed results, this

parameter needs to be evaluated using a more complex learning problem.

Considering the aforementioned small dataset problem and its origin, the answer to

question four is already given. However, since it is related to this question, a reason why

clustering of the target temperature setting is not directly necessary will be given too.

Clustering is applied when every data point needs to be grouped into a specific category.

A data point would be in this case, the target temperature value of the actuator setting.

The executed value for a rule, could be determined by using the cluster center’s value.

An obvious advantage of clustering is that many slightly different temperature values

can be represented as one group or value, which reduces the number of virtual actuators,

and thus avoids small datasets.

However, Figure 29 highlights the reason why clustering is not always necessary. Al-

though the actuator was executed in twenty different settings during the experiment,

the amount of discoveries for three values - 4.5, 17 and 21 ◦C - strike the results. Us-

ing the original dataset, Figure 29a visualizes the amount of discovered rules from the
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(a) The rule discoveries for virtual actuators
using the original dataset.

(b) The same visualization as 29a using the
adjusted dataset.

Figure 29: A comparison of virtual actuator learning w/o minimum dataset threshold.

evaluation with respect to the target actuator value. As evident, the median amount of

discovered rules for rare value settings is always zero. However, when the same visual-

ization is applied on the adjusted dataset, only three values remain as shown by Figure

29b. The reason behind this difference lies in the fact, that for not regular executed

values only small datasets are generated due to the aforementioned and in Section 4.2.1

introduced segmentation concept. The remaining values are similar to the cluster centers

if clustering would be applied.

It should be noticed that the proposed system is strong against unbalanced distributed

values, using a minimum dataset threshold. However, this advantage strikes back if the

setting of an actuator is used not frequently, because no valuable rules would be learned

for it.

The last learning specific question concerns about the -cvsplit parameter. Although

splitting the available dataset into equal sized sets for training and evaluation is a

good starting point, the rules may improve or deteriorate if the distribution of the split

changed. The reason behind this objective is, that with 38 sequences even the biggest

dataset available for evaluation is still quite small. Since half of the data is per default

used for training, this makes only 19 sequences usable for ARM and CL. Although it

was already confirmed that more data lead to more discoveries and better performances,

the effect of changing the distribution needs to be evaluated yet. While more data for

training can lead to better results, fewer evaluation data will value the influence of every

sample higher and thus variety in performances can increase.
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Figure 30: The attempts of virtual actuator learning at different dates.

Comparing results with -cvsplit set to 0.5 and 0.8 confirmed the expected behavior. Al-

though the improvement is low, the median for both: discovered rules and their average

performance, and the performance variety of the validated rules increased. However,

using more data for training in exchange for evaluation precision, should be treated

with care in this context, because the rules in a SH should be tested against as many

situations as possible before they are exported into the SH system in order to provide

benefit against manual configuration of behavior.

Evaluation focused on the Dataset

As mentioned before, the following evaluation is focused on the data that were col-

lected during the experiment. Therefore the source of the behavior in this part of the

evaluation, can not always be reasoned by the algorithm alone.

The 6th question concerns the challenge of learning rules in a continuous manner. Taking

all previous results into account and the knowledge that a rule represents just a snapshot

of the inhabitants’ current behavior, it can be expected that the actuators, that the

system tries to learn, will change over time according to the observed behavior.

Evaluation revealed that - as expected - the target actuators that were discovered mostly,

changed over time as visualized by Figure 30. It should be mentioned, that the bar plot

is based on the adjusted dataset. Nevertheless, while rules in April were focused on

higher temperatures like 17 or 21◦C - starting with May - also rules that set the heating

controller to 4.5◦C were discovered. There are two reasons for this and they are not

explainable through the observed data alone.

The first reason is the change of seasons. The first month was rather cold, so the in-

habitants used the heating controller several times to change the restroom temperature
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(a) The correlation between discovery rate
and the time frame, used for learning.

(b) The median performance with respect to
the time frame, used for learning.

Figure 31: The correlation between the time frame (in days) used for learning and
the learning behavior.

to a comfortable state. During the second month, the outdoor temperature rose to a

comfortable degree so that the heating was turned off most of the time (in case of the

installed device, this means set to 4.5◦C). Another reason for this result were the inhab-

itants itself. Upon request it turned out, that one of the inhabitants was a convenient

being. He wanted to maintain a comfortable room temperature even if the window was

opened or he was absent. Due to this, the heating was rarely turned off, which had an

effect on the dataset size and hence, was simply filtered out from the results.

Continuing with the 7th question, its main motivation for evaluation was - as mentioned

before - to determine a lead time, during that a SH should observe the inhabitant before

the developed system can start to discover rules. Therefore it was evaluated using the

three aforementioned configurations with 14, 28 and 56 days.

As visualized by Figure 31, a correlation between days, the rule discovery rate and their

respective performances for the best and average rules is striking. In some way, these

results are similar to Figure 27 with the difference, that in these results the behavior of

the inhabitants is included. The combination of both results reveal information about

the frequency of the actuator usage. Since the system requires more than 10 samples to

learn a virtual actuator, the heating temperature was rarely set more than one time per

day to a specific. On the other hand this is not surprising, because the actuator was set

to twenty different configurations during the experiment. This leads to the conclusion,

that clustering of the actuator states would not only increase the discovery rate and

performances of rules by avoiding small datasets for learning, but also decrease the lead

time required by the system in order to learn well performing rules.
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Rule Frequency Percentage

[] »> __ 16460 81.64

[Hour_EQUAL_TO_21] »> R_TA01_EQUAL_TO_17 393 1.94

[Hour_EQUAL_TO_22] »> R_TA01_EQUAL_TO_17 277 1.37

[Hour_EQUAL_TO_5] »> R_TA01_EQUAL_TO_21 258 1.27

[Hour_EQUAL_TO_6] »> R_TA01_EQUAL_TO_21 163 0.80

[Hour_EQUAL_TO_17] »> R_TA01_EQUAL_TO_21 146 0.72

[R_C01_EQUAL_TO_OPEN] »> R_TA01_EQUAL_TO_4.5 146 0.72

[Hour_EQUAL_TO_9] »> R_TA01_EQUAL_TO_17 89 0.44

[WeekDay_EQUAL_TO_4] »> R_TA01_EQUAL_TO_4.5 77 0.38

[R_M01_EQUAL_TO_ON] »> R_TA01_EQUAL_TO_4.5 63 0.31

Table 9: A structured overview of the top ten most discovered rules during evaluation.

Finally, the last question will be evaluated manually by considering the most frequent

discovered rules. During evaluation 395 different rules were exported of the system,

from that the most frequent rule covers 81.64% of all rules, as presented in Table 9. The

empty rule is generated if the system could not discover any rules. Due to the afore-

mentioned dataset size problem and since no minimum thresholds for the performance

of the dataset size were given, it could be expected that this rule was discovered most

frequent and dominated the statistic. However the results also confirm, one of the major

disadvantages that the proposed system currently has, is the complete renunciation of

clustering. Considering the second and third rule, the system exported two rules, that

set the target temperature of the heating to 17◦C at 9 and 10 o’clock in the evening.

However, these are hours neighboring numbers and could have suited into a single -

more general - rule. The same can be applied to the 4th and 5th rule. As a result the

system generates many high specialized rules, that may be usable in a SH but could be

expressed more general, to reduce the overload in managing the final set of rules for the

rule-based system of the SH.

Another problem of the system is, that the learned rules - that were derived from the

data - are not semantically validated. The last rule for example turns the heating off

each time an inhabitant enters the toilet, regardless of the current temperature in it.

Although performing well on the observed data, such rules are completely useless for

real usage in a SH. However, the system is also capable of discovering useful rules, as

shown by the 7th rule that turns the heating off when the window is opened.
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Summarizing the evaluation section, the system has many advantages useful for real

applications like: the robust segmentation concept, the adaptive rule discovery which

is based only on data, and the independence from clustering of actuator states, when

a minimum dataset threshold is applied. At the same time, the system has still many

flaws like: the generation of many high specialized rules instead of fewer more general

ones, the often not semantically useful rules that are however confirmed by the observed

data, and the increase in computational resources on larger SH setups.
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7.1 Revisiting the Problem

During the last decades, the proliferation of AmI in the domestic area has risen steadily.

Driven by this development, more and more manufacturer are flooding the marketplace

with various solutions for the so called, Smart Home. However, current solutions share

the characteristic, that no adaptive intelligence manages the domestic environment,

which contradicts with the definition of AmI.

Instead this task is postponed to the inhabitants, leaving them the choice to simply

manage light, heating or locks via remote access or by using manually written expert

rules, which are executed by an integrated rule-based system. However, the skill to

write and maintain these rules needs to be acquired and refined continuously, since

every new installed sensor, new target scenario or new inhabitant behavior needs to be

integrated into the rules. In addition, the difficulty increases if the fact is considered,

that humans are very unsteady beings, and depending on their current condition, may

prefer other configurations for the domestic environment, like a different temperature or

light intensity.

Therefore the aim of this thesis was to propose a system, that not only learns rules to

manage the domestic environment by observing the inhabitants behavior, but that also

adapt the learned knowledge over time to new situations, and that is able to integrate

biomedical data from the inhabitant into its knowledge base.

7.2 Summary and Results of the Thesis

The proposed system combines two different paradigms of ML: ARM and CL. By seg-

menting the captured event stream after executed actuators with their respective states

into datasets of sequences, ARM is applied in order to discover associations between

sensors. For every relation, the respective environmental state of the SH is learned, by

applying CL on examples, generated from the extracted sequences. The resulted deci-

sion rules are validated and finally exported into a SH compatible format - in case of this

project, openHAB. To adapt the rule base over time, the key properties of the exported

rules are stored in a table at the file system. By executing the process periodically, the
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system will adapt the rule base to new sensors and even exchange rules, if better are

discovered.

Due to the abstract nature of the concept, several algorithms for ARM and CL were

implemented. In order to determine a reliable configuration of the learning system, a

screening was performed at which the algorithms for ARM and for CL were executed

under different configurations. As a result, the combination of the algorithm FP-Growths

with the C4.5 descendant PART were used for evaluation of the learning system. Even

though the integration of a biomedical sensor into the SH platform could not be realized

due to lack of time, the conceptual usage of such sensors to sensitize the system, was

elaborated.

Evaluation of the learning system revealed several potential improvements like: clus-

tering of the classifier’s input and output feature space, constraining the discovered

association and decision rules even more to reduce the computational load, and increase

the rule discovery rate on smaller datasets. At the same time, the evaluation confirmed

positive results for several choices that were made like: the segmentation concept that

allows the system to learn rules for any actuator in any SH setup, the composition

of ARM and CL that provides a sensor setup independent approach for behavior rule

learning, and the modular implementation allowing to evaluate various combinations of

ARM and CL algorithms.

Last but not least the most important result from this thesis is the following: The

generated rules can perform very well on the data but may still fail in real usage, because

the data - regardless of how much of the home is observed - is just a very limited view on

an infinite feature space, at which human behavior exists. Due to this, rules that were

generated only from data captured by sensors in a SH, should never be used unchecked

in this context.

7.3 Future Work and Final Thoughts

As mentioned before, the proposed system has still much room for improvement. Beside

the aforementioned functionalities, the influence of biomedical sensors to the learning

behavior of the proposed system, needs to be evaluated yet. In addition, due to the

old building and difficulties in the SH installation, only one actuator could be installed.
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However, a real SH installation contains many actuators and therefore the possibility to

generate loops in rules (if two actuators activate each other), its influence in a working

SH and possible approaches for avoidance, needs to be elaborated in future work.

The vision of AmI is very blurry, which is also reflected by the state of the art and

the general research of it. Instead of following this blurry definition and try to solve

a Herculean task, more focus should be given to current problems like the missing

adaptivity or restrictive supportive functionalities in SHs. Maybe then, when more and

more of the current problems are solved, this vision of AmI will sharpen too.
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A Appendix

Support Confidence Approach F1* Best F1* Average F1* Worst |Rules| %-Used

0.25 0.25 Apriori 0.96 0.15 0 14 4

0.50 0.25 Apriori 0.94 0.18 0 11 9

0.75 0.25 Apriori 0.00 0.00 0.00 1 22

0.25 0.50 Apriori 0.97 0.18 0 14 5

0.50 0.50 Apriori 0.80 0.13 0 5 9

0.75 0.50 Apriori 0.66 0.07 0 2 19

0.25 0.75 Apriori 1.00 0.20 0 13 8

0.50 0.75 Apriori 0.91 0.11 0 7 17

0.75 0.75 Apriori 0.66 0.13 0 1 24

0.25 0.25 FP-Growth 1.00 0.26 0 19 1 **

0.50 0.25 FP-Growth 1.00 0.19 0 20 1

0.75 0.25 FP-Growth 1.00 0.17 0 19 2

0.25 0.50 FP-Growth 1.00 0.22 0 28 1

0.50 0.50 FP-Growth 0.94 0.20 0 19 1

0.75 0.50 FP-Growth 1.00 0.17 0 17 2

0.25 0.75 FP-Growth 1.00 0.23 0 23 2

0.50 0.75 FP-Growth 1.00 0.19 0 34 2

0.75 0.75 FP-Growth 1.00 0.22 0 21 2

Table 10: A comparison table of Apriori and FP-Growth containing the results of all evaluated
support and confidence combinations.

* F1 refers to the median F1-measure of twenty runs.
** The bold row is the chosen ARM configuration for the evaluation of the learning system.

Figure 32: The outline of the restroom setup.
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Figure 33: The outline of the Smart Home apartment.
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Parameter Definition Parameter Definition

rulefolder Filepath where the target
rules are exported to.

actors Parameter that defines the
number of different actua-
tor labels.

ruletable Filepath of the rule-table,
containing basic informa-
tions about every exported
rule.

actors.X With X ≥ 0 the labels of
the various different actua-
tors can be defined like ele-
ments in a list.

rulelog Filepath of the log-file lo-
cation. Required for the
adaptation GUI.

cvsplit A parameter that defines
the distribution of training
and evaluation data from
all segmented sequences.

format File extension of the target
rule-based system in the
SH.

minsetnum A threshold that states the
minimum size of segmented
sequences required in order
to learn rules.

logname openHAB specific parame-
ter. Defines the logger of
openHAB’s logging facility.

performance A classpath to the imple-
mentation of the perfor-
mance measure. Custom
measures need to imple-
ment the PerformanceIn-
terface.

interpreter The classpath of the target
rule interpreter. Will be
used to transform the inter-
nal decision rules into ex-
ternal SH compatible rules.

performance.min A threshold on the perfor-
mance results to filter out
bad performing rules.

db The classpath of the
database driver. Other
Java compatible databases
can be loaded with this
parameter.

arm The classpath of the ARM
implementation. Custom
approaches need to imple-
ment the ARMInterface.

db.url The address of the
database server.

arm.support The support parameter of
the ARM approach.

db.username The username for database
access.

arm.confidence The confidence parameter
of the ARM approach.

db.password The password for database
access.

cla The classpath of the CL
implementation. Custom
approaches need to im-
plement the ClassifierInter-
face.

db.name The name of the database. cla.param The parameters given to
the classifier.

engine The classpath of the
rule engine implemen-
tation. Custom engines
need to implement the
RuleEngineInterface.

Table 11: A structured overview of the parameters required by the learning system.
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