Fachbereich Angewandte Naturwissenschaften

Prof. Dr.-Ing. M. Heinzelmann

University of Applied Sciences

Prüfung im Fach Höhere Werkstoffmechanik 2

04.07.06, Bearbeitungszeit 90 Minuten

Name:	
Vorname:	
Matrikelnummer:	

Bewertung:

Aufgabe	erreichbare Punkte	erreichte Punkte
1	2	
2	4	
3	4	
4	5	
5	3	
Summe:	18	
	Note:	

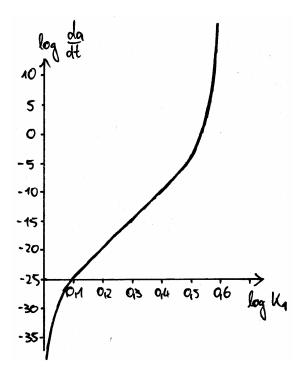
Schreiben Sie sauber, eindeutig und übersichtlich. Schlecht lesbare oder nicht zuzuordnende Ergebnisse, sowie Ergebnisse ohne Herleitung werden nicht bewertet.

Erlaubte Hilfsmittel: Taschenrechner, Skripte, Aufzeichnungen, Übungsaufgaben, alte Klausuren, Bücher, etc. Nicht zugelassen sind Handy, PDA, Laptop, Kontakt zur Außenwelt.

Aufgabe 1

Kreuzen Sie in der folgenden Tabelle an, welche der aufgeführten Materialien ein Bruchverhalten nach den Regeln der linear-elastischen Bruchmechanik erwarten lassen.

Material	LEBM i.d.R. anwendbar	LEBM i.d.R. nicht anwendbar
austenitischer Stahl		
Gusseisen		
gut gekühlte Milchschokolade		
Milchschokolade bei ca. 30°C		
Silizium		
Messing		
Graphit		
Polypropylen		
Kaugummi		
Basalt		


Aufgabe 2

Beim unterkritischen Risswachstum von Keramiken (das was bei Metallen Spannungsrisskorrosion genannt wird) hängt die Risswachstumsgeschwindigkeit da/dt vom Spannungsintensitätsfaktor K_1 ab. Ähnlich wie beim Ermüdungsrisswachstum gibt es auch beim unterkritischen Risswachstum einen Schwellenwert $K_{1,th}$, unterhalb dessen kein Risswachstum auftritt. Oberhalb von $K_{1,th}$ folgt die Abhängigkeit der Risswachstumsgeschwindigkeit da/dt von K_1 im Allgemeinen einer Beziehung vom Typ

$$\frac{da}{dt} = A \cdot K_1^n \quad ,$$

wobei A und n Materialparameter sind. Bei Annäherung an K_{IC} wird die Risswachstumsgeschwindigkeit dann plötzlich sehr groß.

Für eine Al_2O_3 -Keramik wurde die folgende Kurve des unterkritischen Risswachstums gemessen (Spannungsintensitätsfaktoren in $MPa\sqrt{m}$, Rissgeschwindigkeiten in m/s):

- 1. Wie groß sind $K_{1,th}$ und K_{IC} ?
- 2. Bestimmen Sie die Materialparameter A und n.

Hinweis zu Aufgabenteil 2: Sie dürfen dimensionslos rechnen.

Aufgabe 3

Eine ebene Platte, die unter der schwellenden Zugspannung σ = 50 MPa steht, soll bei einer routinemäßigen Inspektion auf eventuell vorhandene Risse untersucht werden.

Die Materialparameter sind:

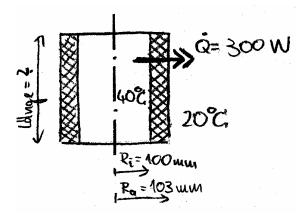
Risszähigkeit:
$$K_{IC} = 50 MPa\sqrt{m}$$
 Risswachstumsgesetz:
$$\frac{da}{dN} = 4 \cdot 10^{-11} \big(\Delta K\big)^4$$
 mit $\frac{da}{dN}$ in $\frac{m}{Lastwechsel}$ und ΔK in $MPa\sqrt{m}$

Welche Risslänge a_0 muss bei der zerstörungsfreien Werkstoffprüfung mindestens mit Sicherheit detektiert werden können, um eine Restlebensdauer von 100.000 Lastwechseln sicher zu stellen.

Hinweis: Verwenden Sie die Gleichungen für einen Griffith-Riss.

Aufgabe 4

Ein Bauteil bestehe aus einem keramischen Werkstoff, dessen Weibullmodul m=12 bekannt ist. Im Betrieb ergibt sich unter der Belastung $\sigma = 320MPa$ die Ausfallrate F = 12%.


a) Berechnen Sie σ_0 .

Um die Ausfallrate im Betrieb zu senken, sollen die Bauteile, bevor sie den Hersteller verlassen, einem Überlast-Test unterzogen werden.

- b) Wie groß ist die Überlast σ_P mindestens zu wählen, damit im Betrieb gar keine Ausfälle auftreten?
- c) Wie groß ist die Überlast σ_P zu wählen, damit die Ausfallwahrscheinlichkeit genau 2% beträgt.

Hinweis: Unterkritisches Risswachstum trete im betrachteten Werkstoff nicht auf.

Aufgabe 5

Ein zylindrischer Behälter habe den Innenradius 100mm und den Außenradius 103mm. Im Behälter befindet sich eine Flüssigkeit der Temperatur 40℃, die Umgebungstemperatur beträgt 20℃.

Wie lang darf der Behälter maximal sein, damit höchstens ein Wärmestrom von 300 W an die Umgebung abgegeben wird?

Wärmeleitfähigkeit Behälterwand: $\lambda = 0.25 \text{ W/mK}$

Nehmen Sie vereinfachend an, dass Wärme nur über die Mantelflächen des Zylinders und nicht über die Stirnseiten austreten kann.