University of Applied Sciences

Prof. Dr.-Ing. M. Heinzelmann

Höhere Werkstoffmechanik – Übungsblatt Nr. 1 Thema: ausgewählte Kapitel des Leichtbaus

Formelsammlung

1. Kriterien für die Werkstoffauswahl:

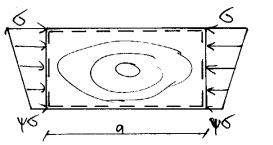
Schritt 1: Gleichung für die zu verbauende Masse m aufstellen (z.B. $m = \rho \cdot V$)

Schritt 2: Gleichung für auftretende Spannung bzw. Verformung aufstellen (je nachdem, ob gegen Spannung oder Verformung zu dimensionieren ist).

Schritt 3: Gleichung 2 in Gleichung 1 einsetzen und nach m auflösen.

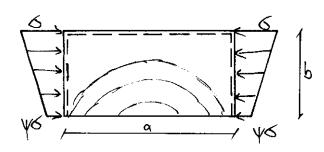
Schritt 4: Die Werkstoffkennzahl (auch als Leichbaukennzahl bezeichnet) M ist $M=\frac{1}{m}$, wenn aus diesem Quotienten alle nicht materialabhängigen Parameter gestrichen werden.

2. Eulersches Knicken:

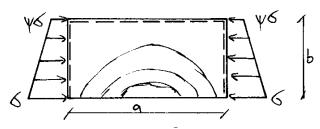

Eulerfall		Knicklänge
1	F	$l_K = 2l$
2	F	$l_{\scriptscriptstyle K}=l$
ß	F	$l_K = \frac{l}{\sqrt{2}}$
4	// F	$l_K = \frac{l}{2}$

- Schritt 1: Eulerfall identifizieren, l_K berechnen.
- Schritt 2: Querschnittsfläche A und Flächenträgheitsmoment I_y berechnen.
- Schritt 3: Schlankheitsgrad $\lambda = l_{K} \sqrt{\frac{A}{I_{y}}}$ berechnen.
- Schritt 4: Grenzschlankheitsgrad $\lambda_0=\pi\sqrt{\frac{E}{0.8\,R_p}}$ berechnen. Für $\lambda<\lambda_0$ überwiegt die Gefahr plastischer Verformung, für $\lambda>\lambda_0$ die Knickgefahr.
- Schritt 5: Berechnung von Knicklast $F_{\scriptscriptstyle K}=\frac{EI_{\scriptscriptstyle y}\pi^2}{l_{\scriptscriptstyle K}^2}$ bzw. kritischer Drucklast bei plastischer Verformung $F_{\scriptscriptstyle D}=0.8R_{\scriptscriptstyle p}A$

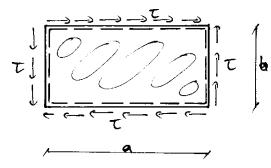
3. Beulen dünnwandiger Blechfelder


Allgemeine Gleichung: $\sigma_{\mathit{krit}} = k_{\sigma} \cdot 0,905 \cdot E \cdot \left(\frac{t}{b}\right)^2$

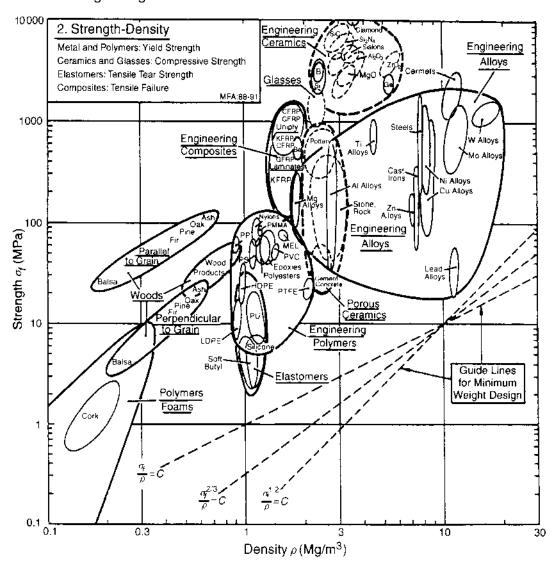
mit t: Blechstärke, b: Breite des Blechfeldes


Für alle 4 Beulfälle gilt b < a

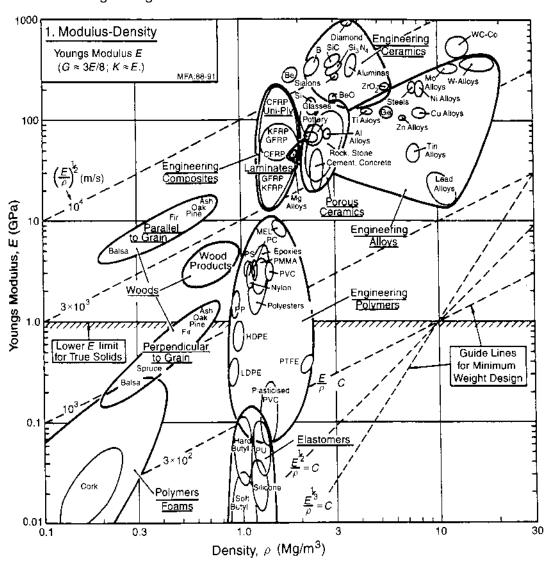
$$k_{\sigma} = 4 + 2(1 - \psi)^3 + 2(1 - \psi)$$
 Spezialfall $\psi = 1$: $k_{\sigma} = 4 \Rightarrow \sigma_{krit} = 3.62 \cdot E \cdot \left(\frac{t}{h}\right)^2$


$$f \ddot{u} r - \frac{1}{3} < \psi \le 1$$

$$k_{\sigma} = \frac{4}{1+3\psi} \left[\left(\frac{b}{a} \right)^2 + 0.426 \right]$$
 Spezialfall $\psi = 1$: $k_{\sigma} = \left(\frac{b}{a} \right)^2 + 0.426$


$$k_{\sigma} = \frac{4}{3 + \psi} \left[\left(\frac{b}{a} \right)^2 + 0.426 \right]$$

$$f\ddot{u}r - 3 < \psi \le 1$$



kritische Beulschubspannung
$$\tau_{krit} = k_{\tau} \cdot 0.905 \cdot E \cdot \left(\frac{t}{b}\right)^2$$
 mit $k_{\tau} = 5.34 + 4 \left(\frac{b}{a}\right)^2$


Zusammenhang Festigkeit - Dichte:

Zusammenhang Steifigkeit - Dichte:

Aufgabe 1

In einem durch eine Streckenlast q_0 belasteten Biegebalken der Länge ℓ darf die Streckgrenze R_p des eingesetzten Werkstoffs nicht überschritten werden.

Berechnen Sie die Leichtbaukennzahlen M für Stahl und Aluminium, wenn die Breite b des Trägers fest und die Höhe h des Trägers variabel ist.

Angaben zu den Werkstoffen:

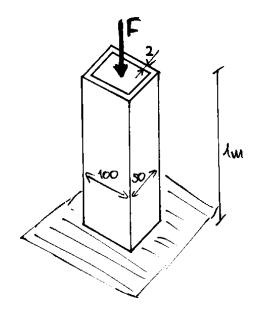
Stahl:
$$\rho = 7850 \frac{kg}{m^3}$$
, $R_p = 400 \frac{N}{mm^2}$
Alu: $\rho = 2700 \frac{kg}{m^3}$, $R_p = 200 \frac{N}{mm^2}$

Aufgabe 2

Zu betrachten ist erneut der durch eine Streckenlast q_0 belasteten Biegebalken der Länge ℓ aus Aufgabe 1. Dimensionierungskriterium ist nun, dass die Durchbiegung des Balkens einen kritischen Wert f_{max} nicht überschreiten darf.

Aufgabenteil 1: Berechnen Sie die Leichtbaukennzahlen M für Stahl und Aluminium, wenn die Breite b des Trägers fest und die Höhe h des Trägers variabel ist.

Angaben zu den Werkstoffen:


Stahl:
$$\rho = 7850 \frac{kg}{m^3}$$
, $E = 207000 \frac{N}{mm^2}$

Alu:
$$\rho = 2700 \frac{kg}{m^3}$$
, $E = 70000 \frac{N}{mm^2}$

Hinweis zum beidseitig gelagerten Biegebalken unter Streckenlast: $f_{\text{max}} = \frac{5}{384} \cdot \frac{q_0 l^4}{EI}$

Aufgabenteil 2: Wählen Sie durch geeignete graphische Auswertung des E-ρ-Diagramms jeweils fünf Werkstoffe mit besserer und mit schlechterer Leichtbaueignung als Stahl aus.

Aufgabe 3

Auf den skizzierten 1m langen Pfosten des Querschnitts 100mm×50mm×2mm wird eine stetig steigende Druckkraft F aufgebracht.

- Bei welcher Kraft sind (a) plastische Verformung, (b) Eulersches Knicken und (c) Beulen einer der Wände zu erwarten?
- 2. Wie hoch müsste der Pfosten sein, damit Beulen und Eulersches Knicken bei gleicher Last zu erwarten sind?

Angaben zum Werkstoff:

$$E = 200000 \frac{N}{mm^2}$$
, $R_p = 500 \frac{N}{mm^2}$