University of Applied Sciences

Fachbereich Angewandte Naturwissenschaften

Prof. Dr.-Ing. M. Heinzelmann

Höhere Werkstoffmechanik – Übungsblatt Nr. 3 Thema: Schwingfestigkeit

Formelsammlung

1. Kurzzeitermüdung ("low cycle fatigue")

Manson-Coffin-Gesetz: $\Delta \varepsilon_{pl} \cdot N_B^{0.6} = C$

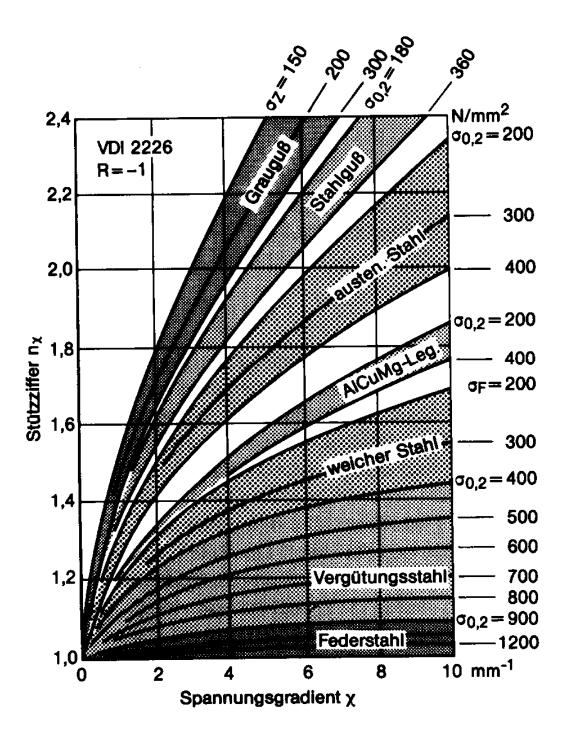
2. Kerbwirkung

max. Spannung im Kerbgrund: $\sigma_{\max} = \alpha_{\scriptscriptstyle K} \cdot \sigma_{\scriptscriptstyle n}$ mit der Kerbformzahl $\alpha_{\scriptscriptstyle K}$ und der Nennspannung $\sigma_{\scriptscriptstyle n}$

relativer Spannungsgradient χ : $\chi=\frac{1}{\sigma_{\max}}\cdot\frac{d\sigma}{dx}$, näherungsweise gilt für χ : $\chi\cdot\rho=2$, wobei ρ der Kerbgrundradius ist.

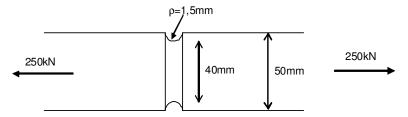
$$\text{Neuber-Regel: } \alpha_{\sigma} \cdot \alpha_{\varepsilon} = \alpha_{K}^{2} \rightarrow ... \rightarrow \sigma_{\max} = \alpha_{K}^{2} \frac{\sigma_{n}^{2}}{E} \cdot \frac{1}{\varepsilon_{\max}}$$

Bedingung für die Dauerfestigkeit gekerbter Bauteile: $\sigma_{\scriptscriptstyle n}\cdot\beta_{\scriptscriptstyle K}\leq\sigma_{\scriptscriptstyle D}$

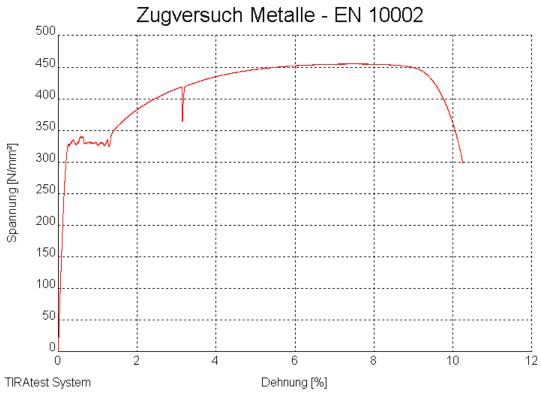

 $(\sigma_n$: Nennspannung, β_K : Kerbwirkungszahl, σ_D : Dauerfestigkeit der ungekerbten Probe)

Berechnung von β_K nach $\beta_K = \frac{\alpha_K}{n_\chi}$, wobei sich die so genannte Stützziffer n_χ aus umseitiger Abbildung ergibt.

Wirkung von Kerben auf die Kurzzeitermüdung:


Schritt 1: mit Neuber-Hyperbel und Spannungs-Dehnungs-Kurve die plastische Dehnungsschwingbreite $\Delta\epsilon_{pl}$ ermitteln

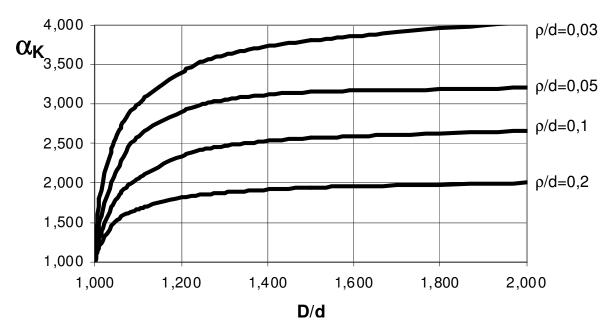
Schritt 2: Anwendung des Manson-Coffin-Gesetzes



Aufgabe 1

Gegeben die folgenden Welle unter Zugbelastung:




Das Spannungs-Dehnung-Diagramm – es handelt sich um einen Baustahl - sei gegeben durch

Weitere Werkstoffangaben: Emodul E=200000N/mm² (Baustahl) Manson-Coffin-Parameter C=0,5

- 1. Berechnen Sie allein mit Hilfe der Kerbformzahl α_K bzw. K_t die Spannung im Kerbgrund. Ist der von Ihnen berechnete Spannungswert realistisch?
- 2. Ermitteln Sie mit Hilfe der Neuber-Regel die im Kerbgrund herrschende Spannung σ_{max} , die im Kerbgrund herrschende Dehnung ϵ_{max} und die im Kerbgrund herrschende plastische Dehnung $\epsilon_{max,pl}$.

Aufgabe 2

Die Belastung der in Aufgabe 1 skizzierten Welle sei nun ±250kN als Wechsellast.

- 1. Erwarten Sie ausgehend von den Ergebnissen von Aufgabe 1, dass die Welle daueroder zeitfest ist?
- 2. Wie viele Lastwechsel kann die Welle bis zum Bruch ertragen?

Aufgabe 3

Gesucht ist nun diejenige äußere Wechsellast $\pm F_{grenz}$, bei der sich die in Aufgabe 1 skizzierte Welle gerade an der Grenze zur Dauerfestigkeit befindet. Die Dauerfestigkeit betrage $\sigma_D = \pm 160 N/mm^2$.

- 1. Schätzen Sie die Größe des Spannungsgradienten χ ab.
- 2. Bestimmen Sie die Kerbwirkungszahl β_K .
- 3. Wie groß ist $\pm F_{grenz}$?