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Objectives:  

The scope of this study was to predict macroscopic mechanical composite properties based on a new 

“atomistic” microscale materials model called Elementary Volume Concept (EVC). Models by Halpin-Tsai1 

or Tandon-Weng2 are state of the art in materials modelling using continuum approaches to describe 

effects of dispersed short fibres or fillers on Young’s moduli only.  

Conclusions: 

It is shown that regardless of the phase character 

of the composites the EVC is able to predict well 

the measured stiffnesses within the standard 

deviations. Effects of filler geometry can be taken 

into account as well as adhesion or reinforcing 

effects of the interface. Furthermore, it allows for 

calculating the stiffness of any mixture ratio of 

matrix and disperse phase.  

The modelling of ABS and the dependency of its 

mechanical properties on butadiene content as 

well as particle size shows that the interface 

properties differ from matrix and particle. 

The modelling of the PCL-TPS blends shows that 

the description phase inversion effects  with 

changing composition ratios becomes possible.  

VISCOELASTIC MODELLING OF STRESS-STRAIN-BEHAVIOR OF TWO PHASE MODEL 

MATERIALS (ABS AND PCL-TPS (POLY-e-CAPROLACTONE / THERMOPLASTIC STARCH) BLENDS) 
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Introduction: 

The stress-strain-behavior of homo-polymers and 

statistical copolymers can be well described by a 

viscoelastic stress-strain-function (VSSF) based 

on the MAXWELL-Model [3] 

    

   

with stress σ, strain ε, Young´s modulus E, relax-

ation strain εR and Poisson ratio µ. For polymers 

containing a disperse phase (2nd polymer, glass 

spheres, filler particles etc.) it would be interesting 

to use Eq.(1) to describe the stress-strain-behavior 

of both matrix and disperse phase, and to 

introduce effects of the volume content of disperse 

phase vF via a phase model. This model attributes 

for the load transfer between matrix and disperse 

phase to calculate the mechanical behavior of 

polymers having any volume content vF.  

Materials and Methods: 

Test bars of type 1B were manufactured of  

• Acrylonitrile butadiene styrene (ABS) model 

materials with defined butadiene contents (wF = 

7.5%, 15%, 22.5%, 30%) having particle sizes of 

100 nm and 400 nm in various fractions, and 

• PCL, TPS, and PCL-TPS-blends having mass 

fraction ratios of 60/40, 50/50, 40/60, 30/70 and 

20/80. The TPS component was softened using 

25% glycerol.  

Volume fractions were calculated using the mass 

fractions by means of density measurements of 

each mixture ratio. 

Tensile tests were performed according to ISO 527 

using a ZWICK 1476 tensile testing machine with a 

strain rate of 10%/min.  

Young´s moduli E and relaxation strains eR were 

determined by curve fitting of stress-strain-curves 

using the VSSF (Eq. 1). 

In case of two different disperse phases one 

obtains a filler volume fraction dependent relation 

for the Young´s modulus. 

with filler portion x100nm for small particles,  Young´s 

moduli E where M and F denotes matrix and filler. 

Eq.3 holds for the ABS model materials containing 

two different particle sizes. If there is only one kind 

of disperse phase the second term of Eq.3 

vanishes and only the black term remains. As 

𝑣𝐹 =
𝑘3

1+𝑑 3 one can introduce  effects of matrix-

filler-adhesion by multiplying k with an adhesion 

factor kadh.  

Results and discussion: 

The Young´s moduli of ABS depend highly on the 

butadiene content as well as the particle size 

distribution of small and large particles. With 

increasing butadiene content and larger particle 

fraction the modulus decreases. Modelling this 

behavior with the EVC the calculated values (blue 

and green bars) fit the progression of the 

measured values, but only the calculated values 

considering the adhesion factor kadh=1.18 (green 

bars) are in good agreement with the measured 

values within the standard deviation, Fig.2. 

 

Young´s moduli of PCL-TPS blends decrease with 

increasing TPS content. The blends show that a 

phase inversion occurs if the TPS content exceeds 

70%. Therefore Young`s moduli are calculated for 

the two cases: PCL and TPS as matrix materials 

seperately, Fig. 3. 

(3) 

Fig.1: EV of matrix with “dispersed“ spheres or filler (left) 

and its division in matrix part and composite part (right) 

Fig.3: Calculated Young‘s moduli of PCL-TPS blends due 

to Eq.3 compared to measured ones. 
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Fig.2: Calculated Young‘s moduli of ABS model materials 

due to Eq.3 compared to measured ones. 

Modelling with the EVC: 

The Elementary Volume Concept (EVC) assumes 

that the mechanical behavior of any material is 

represented by the behavior of an elementary 

volume (EV) containing a single inclusion, Fig. 1 

(left). In order to determine the mechanical behavior 

of the EV, it is divided in a matrix part and 

composite part in series, Fig. 1 (right). It is obvious 

that the strains of EV 𝜀𝐸𝑉, matrix part 𝜀𝑀 and com-

posite part 𝜀𝐹   differ but are related to each other  
  

  

 

with normalized inclusion distance 𝑑 =
𝑎

𝐷
 and 

efficiency faktor k taking into account the inclusion 

geometry. 
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