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Semi-Lagrangian Lattice Boltzmann Method 
for Compressible Flows

Dominik Wilde1,2, Andreas Krämer2, Mario Bedrunka2, Dirk Reith2, Holger Foysi1 

In the field of weakly compressible and isothermal flows, the lattice Boltzmann method (LBM) 
is an established tool for Computational Fluid Dynamics. However, in the field of compressible 
flows, there is no generally accepted framework. In addition, Eulerian solvers like finite difference 
or finite volume LBM suffer from high computational costs.
We present an extension of the semi-Lagrangian lattice Boltzmann method (SLLBM) for com-
pressible flows, which is based on a cell-based interpolation of the simulation domain.

Methodology
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I. D2Q25 velocity set Results
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Key features

• No time integrator needed
• Adjustable time step size
• Spatially high-order solution
• Unstructured meshes supported
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Gauß-Lobatto-Chebychev

Equidistant

• Interpolation up to fourth order
• Use of Gauß-Lobatto-Chebyshev support
points to minimize oscillations

II. Cell-based interpolation

Expansion up to fourth order enables 
compressible flows for LBM

III. Equilibrium by Hermite projection
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f eq,N (ξ̂) ≈ ω(ξ̂)

N∑
n=0

1

n!
a(n)(x, t) · H(n)(ξ̂)

Velocity set ba-
sed on the roots 
of the 5th order 
Hermite poly-
nomials

B. 2D Riemann problem

C. Shock-vortex interaction
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Introduction

• Density and temperature lines in comparison to the reference
• 200 grid points in 100 cells
• order of interpolation polynomial: 2

• Density contours of a 2D Riemann problem
• 512 x 512 grid points with 128 x 128 cells
• order of interpolation polynomial: 4

Contact

In contrast to standard LBM, the SLLBM allows for stretched 
grids, which were used in the shock-vortex simulations. 
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fi(x, t) = fi(x− δtξi, t− δt)−
1

τ
[fi(x− δtξi, t− δt)− f eq

i (x− δtξi, t− δt)]

The lattice Boltzmann method solves the Navier-Stokes equations by a stream 
and collide algorithm of the particle distribution function f. Instead of the node-
to-node streaming step, the Semi-Lagrangian lattice Boltzmann method deter-
mines the departure point by interpolation.

Evaluation of the sound 
pressure curves from the 
center of the vortex after 
times 6, 8, 10 compared 
to the reference by In-
oue and Hattori.

Density contours 
of a shock-vor-
tex interaction as 
in O. Inoue and 
Y. Hattori, J. Flu-
id Mech. 380, 81
(1999).

• 512x512 grid
points

• Order of inter-
polation poly-
nomial: 4

• Medium reso-
lution of nor-
malized radius
R: 7.2 points in
x-direction.

Particle velocities and 
weights of the underly-
ing D1Q5

Distribution of support 
points in the reference 
cell.

Comparison of the pres-
sure lines in the 2D 
Riemann problem for 
equidistant and Gauß-Lo-
batto-Chebyshev nodes. 
The latter allows for stable 
simulations.
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• Extension to 3 dimensions
• Test of new velocity sets
• Application to viscous test

cases with solid boundaries

• Interpolation up to fourth order
• Use of Gauß-Lobatto-Chebyshev support
points to minimize oscillations




