

Nordic Rheology Conference Gothenburg, August 21-23, 2019

Estimating mechanical rubber properties from moving die rheometer vulcanization curves under consideration of the rubber composition.

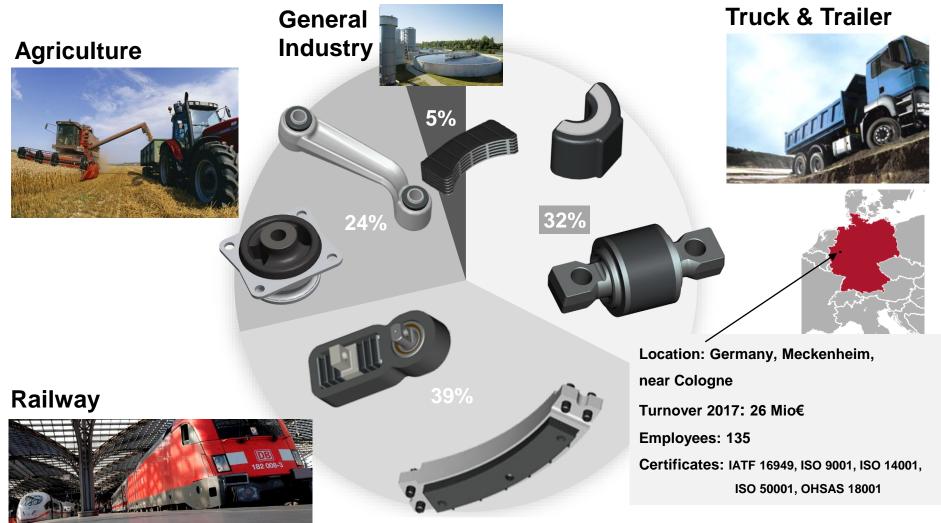
Johannes Steinhaus^{1,2}, André Almeida², Ulrich Lantermann², Bernhard Möginger¹

¹Bonn-Rhein-Sieg University of Applied Sciences, Institute of Technology, Resource and Energy-Efficient Engineering, Rheinbach, Germany ²BHC Gummi-Metall GmbH, Meckenheim, Germany

Institute of Technology, Energy-Efficient Engineerig

Overview

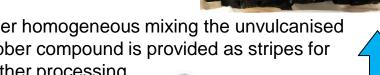
- Introduction •
- Scope •
- Methods & Materials •
- **Results** ullet
- Conclusion •



Introduction

 $(BHC) \rightarrow$ produces rubber-metal bearings and dampers for these application fields:

Gummi-Metall-Technik



BHC \rightarrow Incoming rubber compounds

- Processing of approx. 400t p.a. of ٠ NR-, NR/BR-, NR/SBR- & NBR-compounds
- 108 BHC own recipes und specifications ٠
- 4 compound suppliers & development partners ٠

Rubber compounds are complex mixtures of rubbers, carbon black, oils, waxes, fillers, sulphur, accelerators, inhibitors, stabilizers, etc.

After homogeneous mixing the unvulcanised rubber compound is provided as stripes for further processing

Introduction

Scope

BHC \rightarrow Incoming rubber quality inspection

Every incoming rubber batch:

- Moving Die Rheometer (Curemeter): storage torque and loss angle prior to, during and after vulcanization
 - \rightarrow flowability during processing
 - \rightarrow dyn. mech. properties after vulcanization

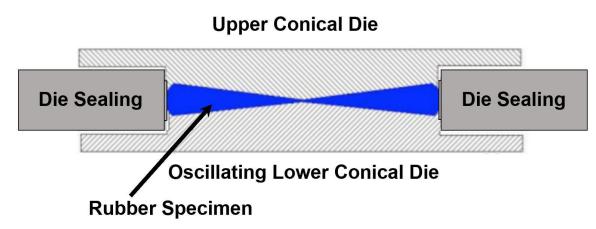
Moving Die Rheometer (Curemeter)

Shore A hardness Shore A hardness Shore A hardness Shore A hardness A form testing plate has to be manufactured (~ 20 min + 10 min for additional measurements) Others, e.g. tensile, abrasion, etc.

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

$\mathsf{BHC} \rightarrow \mathsf{Incoming\ rubber\ quality\ inspection}$

• Moving Die Rheometer (Curemeter)



Vulcanisation at: - 170°C

Method

- Oszillation 0.5°/1.67Hz


Hochschule **Bonn-Rhein-Sieg** University of Applied Sciences

B Gummi-Metall-Technik

BHC \rightarrow Incoming rubber quality inspection

Moving Die Rheometer (Curemeter) •

10.00

Method

3.0

0.00

S

min

5.00

Vulcanisation time, t [min]

15.00

max

20.00

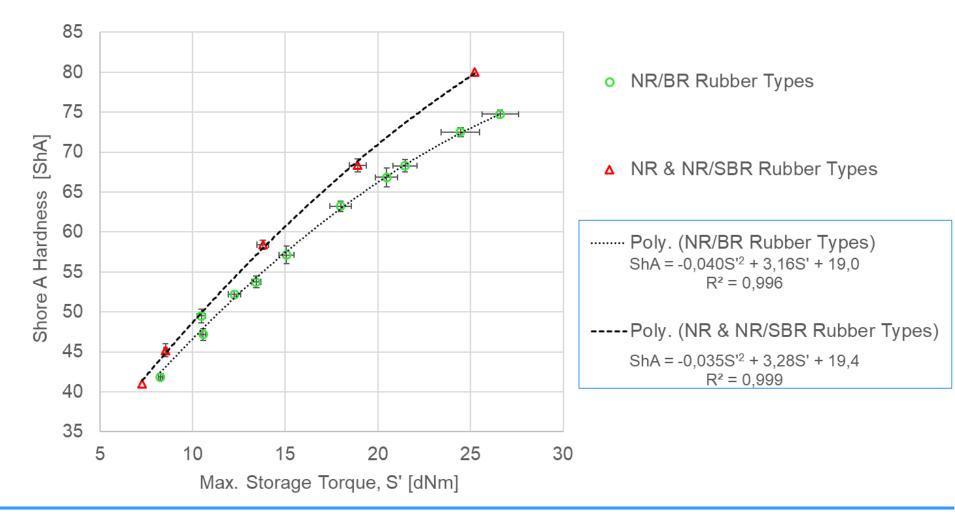
25.00 Time

Materials

Evaluated rubber types with incoming quality inspection:

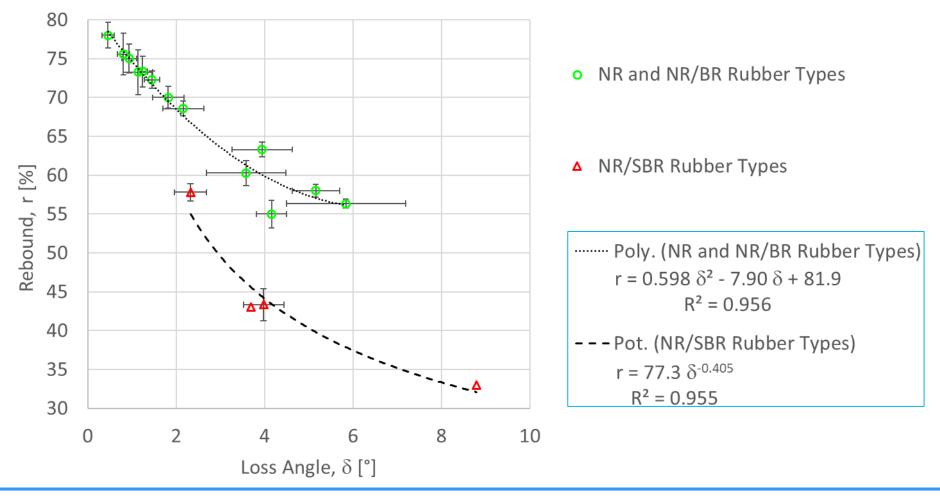
(all tested with moving die rheometer)

No.	Name	Polymer type:	Mean Shore A Hardness
		NR: natural rubber,	Acc. to 3.1 report of
		BR: butadiene rubber,	rubber supplier
		SBR: styrene butadiene rubber	(No. of tested batches)
1.	41-NRSBR	NR, SBR	41.0 (1)
2.	42-NRBR	NR, BR	41.8 (4)
3.	45-NR	NR	45.2 (7)
4.	47-NRBR	NR, BR	47.2 (7)
5.	50-NRBR	NR, BR	49.5 (6)
6.	52-NRBR	NR, BR	52.2 (4)
7.	53-NR	NR	52.5 (2)
8.	54-NRBR	NR, BR	53.8 (7)
9.	57-NRBR	NR, BR	57.1 (7)
10.	58-NRSBR	NR, SBR	58.4 (5)
11.	63-NRBR	NR, BR	63.2 (7)
12.	67-NRBR	NR, BR	66.8 (6)
13.	68-NRBR	NR, BR	68.3 (7)
14.	68-NRSBR	NR, SBR	68.3 (6)
15.	73-NRBR	NR, BR	72.5 (4)
16.	75-NRBR	NR, BR	74.8 (3)
17.	80-NRSBR	NR, SBR	80.0 (1)



Evaluated rubber types with incoming quality inspection:

Correlation of shore A hardness from suppliers 3.1 test report with max. storage torque



Evaluated rubber types with incoming quality inspection:

Correlation of rebound resilience from suppliers 3.1 test report with max. loss angle

Conclusion

- Moving die rheometer measurements for incoming goods quality inspection can be used to calculate shore A hardness and rebound resilience
- For shore A hardness the prediction error is <5%
- For rebound resilience the prediction error is <10%
 → Scattering increases with higher filler contents resp. higher loss angles

Benefits:

- Easy comparison with 3.1 test report data from the rubber compound supplier
- Prediction of changes of the mechanical properties of cured rubber batches with respect to longer storage time (ageing) prior to curing.
 → shelf-life



Hochschule Bonn-Rhein-Sieg University of Applied Sciences

TREE Institute of Technology, Resource and Energy-Efficient Engineerig

J. Steinhaus